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A B S T R A C T

Spatial variability has been one of the major challenges for large-area crop monitoring and classification
with remote sensing. Recent works on deep learning have introduced spatial transformation methods to
automatically partition a heterogeneous region into multiple homogeneous sub-regions during the training
process. However, the framework is only designed for deep learning and is not available for other models, e.g.,
decision tree and random forest, which are frequently the models of choice in many crop mapping products.
This paper develops a geo-aware random forest (Geo-RF) model to enable new capabilities to automatically
recognize spatial variability during training, partition the space, and learn local models. Specifically, Geo-RF
can capture spatial partitions with flexible shapes via an efficient bi-partitioning optimization algorithm. Geo-
RF also automatically determines the number of partitions needed in a hierarchical manner via statistical tests
and builds local RF models along the partitioning process to explicitly address spatial variability and improve
classification quality. We used both synthetic and real-world data to evaluate the effectiveness of Geo-RF. First,
through the controlled synthetic experiment, Geo-RF demonstrated the ability to capture the artificially-inserted
true partition where a different relationship between the inputs and outputs is used. Second, we showed the
improvements from Geo-RF using crop classification for five major crops over the contiguous US. The results
demonstrated that Geo-RF is able to significantly improve classification performance in sub-regions that are
otherwise compromised in a single RF model. For example, the partition around downstream Mississippi for
soybean classification led to major improvements for about 0.10-0.25 in F1 scores in the area, and the score
increased from 0.57 to 0.82 at certain locations. Similarly, for rice classification, the partition in Arkansas led
to F1 scores increasing from 0.59 to 0.88 in local areas. In addition, we evaluated the models under different
parameter settings, and the results showed that Geo-RF led to improvements over RF in the vast majority
of scenarios (e.g., varying model complexity and training sizes). Computationally, Geo-RF took about one to
three times more training time while its execution time during testing was similar to that of RF. Overall,
Geo-RF showed the ability to automatically address spatial variability via partitioning optimization, which is
an important skill for improving crop classification over heterogeneous geographic areas at large scale. Future
research can explore the use of Geo-RF for other geographic regions and applications, interpretable methods
to understand the data-driven partitioning, and new designs to further enhance the computational efficiency.
1. Introduction

Spatial variability (a.k.a., spatial heterogeneity) has been one of
the major challenges for large-area crop monitoring and mapping with
remote sensing. The variability indicates that the distributions of in-
put features X (e.g., satellite-derived reflectance values in the optical
domain and backscatter coefficient in the microwave domain), output
targets y (e.g., crop types), and the functional relationships between
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X and y can all vary over space. In particular, variations in the func-
tional relationships X → y over geographic regions make it extremely
difficult to learn a single model to approximate those different re-
lationships (Goodchild and Li, 2021; Xie et al., 2021a; Atluri et al.,
2018). Technically, one of the causes of such variations is the existence
of unobserved variables that are related to the output targets. For
example, readings from satellite sensors such as Sentinel-2 often only
carry partial or aggregated information of the entire physical process
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data mining, AI training, and similar technologies. 
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from field crops to the sensors, and some variables that contribute
to the process may not be observed or fully reflected, such as soil
moisture, temperature, crop health status, applications of pesticides,
etc. However, the values of such unobserved variables are most likely
not a fixed constant over geographic regions (Goodchild and Li, 2021),
leading to changes in the optimal functional relationships – as learned
by a machine learning algorithm – between observed variables X and
y in different regions. This intrinsic property of geographic data and
phenomena violates the classic independence and identical distribution
(i.i.d.) assumption in most machine learning algorithms. In practice,
this means that a single model is used to represent all data samples de-
spite their potential differences across locations. While this is not ideal,
it is still the most common practice in machine learning applications for
crop mapping due to the convenience and lack of automated methods to
recognize and address the variability issue. This gap may significantly
limit a model’s ability to reach its best performance, and can easily
generate maps with variable quality of performance across regions.

In related work, various research efforts have tried to bridge this gap
for different types of application scenarios. Geographically-weighted
regression (GWR) is a traditional approach to explicitly model spa-
tial variability (Brunsdon et al., 1999; Fotheringham et al., 2017).
It can be considered as a ‘‘spatial’’ special-case of local regression,
i.e., a nonparametric model that learns a local model for each different
location in the dataset. However, GWR is designed for real-valued
linear inference and is not suitable for modeling complex nonlinear
relationships between satellite signals and crop classes. There have also
been recent extensions of GWR to support non-linear models, such as
the geographically-weighted random forest (GWRF). Similarly, GWRF
learns a different local random forest (RF) at each location in the
dataset (Georganos et al., 2021; Luo et al., 2022; Grekousis et al.,
2022). However, this exhaustive generation of local models leads to
a very high computational cost. As a result, GWRF has only been
applicable to very coarse-granularity problems, such as county-level
regression (i.e., with tens of counties where each county is one data
point), and is not computationally feasible for most satellite remote
sensing tasks, where pixel-level predictions are needed. One reason be-
hind the exhaustive local model design is the lack of methods to capture
the spatial footprints of variability patterns, e.g., which locations share
the same or very similar X → y relationships and which regions are
different?

To address this issue, recent studies in deep learning have intro-
duced a spatial transformation framework (Xie et al., 2021a, 2023).
This framework automatically partitions a heterogeneous region into

ultiple homogeneous sub-regions during the training process using
tatistics calculated from the performance of the deep learning mod-

els over space. However, spatial transformation is designed for deep
learning and it includes design decisions (e.g., network-layer-based pa-
rameter sharing) that are specifically tailored for deep neural networks.
The approach was evaluated using several examples of applications,
including land cover classification and human mobility estimation. The
land cover classification was carried out in a 80 km×80 km study
area in California, and the model has an average F1 score at about
0.7. This framework is currently not available for non-deep-learning
models, e.g., decision tree and RF.

On the other hand, these traditional machine learning models are
still important and frequently used in satellite data processing to gen-
erate agriculture-related geoinformation products at national or global
scales. For example, the US Department of Agriculture (USDA) and

griculture and Agri-Food Canada (AAFC) use decision tree models
o create annual crop type maps, Cropland Data Layer (CDL) (Boryan

et al., 2011; CDL, 2024) and Annual Crop Inventory (Fisette et al.,
2013), respectively. The European Space Agency-funded system, the
Sentinel-2 for Agriculture (Sen2-Agri) (Defourny et al., 2019), uses a

F classifier to map crop types based on multi-temporal Sentinel-2 and
andsat −8 images. These classifiers are also among the most popular
hoices in the Google Earth Engine platform (Gorelick et al., 2017;
 i

2 
Phalke et al., 2020; Xuan et al., 2023). In addition, RF remains widely
used in recent studies on crop mapping. For example, Blickensdörfer
et al. (2022) explored time-series crop mapping using RF under condi-
tions with strong inter-annual meteorological variability. Wang et al.
(2019) and Zhang et al. (2022) explored the use of RF in scenarios
with no direct field-level labels. Efforts have also utilized RF to develop
high-resolution crop maps using Sentinel-1/2, Landsat −8 or multi-
source imagery in different geographies, including Brazil (Pott et al.,
2021), China (Li et al., 2023), Europe (d’Andrimont et al., 2021), South
Africa (Mpakairi et al., 2023) and broader regions (Phalke et al., 2020).

From the methodological point of view, tabular data representa-
tions are still very common in the practical applications of remote
sensing (e.g., each data point with its X being the spectral band
alues of a pixel, and its y being the crop type of the pixel). In this
ealm, tree-based models still often outperform deep learning models as
emonstrated by various evaluations (Grinsztajn et al., 2022; Shwartz-

Ziv and Armon, 2022). With that said, the scope of the present study is
ot to compare traditional machine learning and deep learning models

for crop classification. The ranking of traditional machine learning and
deep learning models remains an open research question and they may
be complementary to each other as model choices in different scenarios.
This work focuses on RF, which remains a common choice for pillar
remote sensing products and related Earth Science research, and aims
to provide an enhanced variability-aware learning framework for this
important model.

This work aims to develop a geo-aware RF (Geo-RF) by incor-
porating RF into the spatial transformation framework, with design
decisions tailored based on the characteristics of the tree-based ensem-
ble model. Compared to RF, Geo-RF aims to provide new capabilities
to automatically recognize spatial variability, partition the space, and
learn local models to break the dilemma a single model faces between
different heterogeneous regions. Our experiments used both synthetic
data and US major crop classification data to evaluate the effectiveness
of Geo-RF. We carried out a case study using crop classification in
the contiguous US (CONUS). The input X consists of 10 spectral bands
from Sentinel-2 over 33 timestamps in 2021 with 3 additional terrain
attributes, and the sample locations are 1 km apart expanding over
the entire CONUS area. The labels for five example major crops (corn,
soybean, wheat, rice, and cotton) are collected from the US CDL. We
also carried out an extensive sensitivity analysis to better evaluate and
understand Geo-RF’s behavior in different scenarios.

2. Methods

In this section, we present details of the technical methods used to
onstruct Geo-RF, which builds on our previous deep-learning-based
patial transformation framework (Xie et al., 2021a). Specifically, Sec-

tion 2.1 provides an overview of variability-aware learning. Section 2.2
introduces the hierarchical process for partitioning the space into any
number of partitions – as needed – where each step performs a bi-
artitioning of a given area. Section 2.3 describes methods to optimize
he bi-partitioning based on the performance statistics obtained by the
urrent RF model over different locations. Section 2.4 discusses the use

of statistical tests to verify the variability between sub-partitions and its
impact on the performance of RF models. Finally, Section 2.5 explains
the training and selection of the local RF models for the partitions.

2.1. Overview of variability-aware learning and Geo-RF

First, we provide an overview of different strategies to account
or spatial variability when using machine learning. Fig. 1 shows a

comparison of three paradigms for variability-aware learning. The first
paradigm in Fig. 1 (left) requires a pre-defined or known partitioning
that separates locations with different functional relationships X → y
nto different partitionings. This could be a suitable option when the
nput data are collected from a few discrete locations that are far
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Fig. 1. An overview of different paradigms to address spatial variability. GWRF is often used for problems involving a small number of discrete locations, and is not computationally
feasible for many remote sensing problems covering broad areas.
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apart (Gupta et al., 2020, 2021) and is limited for general scenarios
here the problem covers a contiguous large area (e.g., CONUS)
nd an optimal partitioning for different X → y is unknown. Fig. 1

(middle) shows the geographically-weighted paradigm, which is a
on-parametric approach (Georganos et al., 2021; Luo et al., 2022;

Grekousis et al., 2022). Instead of learning a fixed set of parameters for
the entire region, it learns a local model at every location in the study
area when making classifications/predictions, with the assumption that
the similarity of functional relationships X → y depends only on
geographical distances. This paradigm addresses a major drawback of
the first paradigm by removing the requirement of an input partitioning
of X → y, which is often problem-dependent, data-dependent and
unavailable in general use cases. However, a major limitation of this
nonparametric approach is the computation, due to which the vast
majority of its applications are for problems with a relatively small
number of locations (Georganos et al., 2021). The computational cost
will become largely infeasible for large-scale and high-resolution map-
ping tasks in remote sensing, including crop mapping, with millions or
illions of spatial units for classification.

Finally, Fig. 1 (right) shows the spatial transformation paradigm
dopted for this work on Geo-RF. The goal of this paradigm is to address
he computational bottleneck posed by the exhaustive nonparametric
odels. Building on top of spatial transformation, Geo-RF is a top-down

pproach that will start with a single global model, and adaptively par-
ition the space – only as needed – based on the estimated differences
n functional relationships X → y during the training process. In this
aradigm, local models are only learned for the partitions. As a simple
xample, if Geo-RF does not identify any significant heterogeneity in
he functional relationships, it will just return a single RF model that
s the same as the global RF model trained without using Geo-RF.
his both avoids the need for a known partitioning and can effectively
educe unnecessary local models to make it computationally efficient
nd practical.

2.2. Hierarchical bi-partitioning of space

For general real-world scenarios, the number of spatial partitions
needed to separate different functional relationships X→ y is unknown.
Thus, Geo-RF needs to have the ability to generate a flexible number
of partitions as needed for a given problem. To achieve this goal,
Fig. 2 shows a hierarchical process, where each step in the hierarchy
carries out a bi-partitioning of the space. Starting from the entire input
tudy area, the hierarchical bi-partitioning process continues at child-
artitions until no further variability or heterogeneity is identified
determined by statistical tests in Section 2.4), allowing the number

of partitions to grow as needed. Further, as shown in the middle
row of Fig. 2, the RF model grows from a single global model to a
ollection of local RF models as the space gets partitioned. The last
ow of Fig. 2 shows the expected improvements in model performance
3 
as heterogeneous regions are partitioned and local models are built.
Technically, the reason that a single RF is not able to get a better
performance is due to the conflicts between regions with different
functional relationships X → y. These conflicts often lead to dilemmas
for the single model, as reducing misclassification for samples at some
locations may lead to more errors at others. The gradual improvements
in model performance mean that the conflicts preventing the RF model
from further improvements are addressed by the partitioning.

The two key building blocks left now are the methods to: (1) find
n optimal bi-partitioning at each step; and (2) determine if the bi-
artitioning really represents variability and can lead to meaningful
mprovement in model performance. Fig. 3 summarizes the key steps

in the hierarchical partitioning workflow of Geo-RF, and the methods
ill be detailed in the following Sections 2.3 and 2.4.

2.3. Bi-partitioning optimization using statistics of RF performance

There are two essential components in identifying an optimal bi-
partitioning of the space: (1) A score function to quantify and rank
different candidate bi-partitioning schemes based on the potential dif-
ferences between the functional relationships X → y of the two
partitions; and (2) A partitioning enumeration algorithm to effi-
ciently search and explore different candidate partitioning schemes,
and find the optimal one based on the score function. Since the foot-
prints of partitions can be arbitrary due to the underlying physical
and social contexts, the search algorithm needs to have the ability to
enumerate partitioning schemes with flexible shapes. For these two
components, we apply our previous statistical framework developed for
deep learning models (Xie et al., 2021a), and introduce it in the context
of RF.

2.3.1. Score function based on a multivariate scan statistic
As the objective of the score function is to quantify whether there

are potential differences between the functional relationships X → y
of data points in the two partitions, we start with two hypotheses
to facilitate the design of the function: (1) Null hypothesis 𝐻0: The
functional relationships X → y between the two (sub-)partitions are
the same (i.e., no need for the partitioning to happen), and (2) Alterna-
tive hypothesis 𝐻1: The functional relationships are different. Based
on this, the multivariate scan statistic (MSS) is used to measure the
differences. MSS (Neill et al., 2013; Xie et al., 2021b; Kulldorff et al.,
2007), as an extension of the spatial scan statistic (Kulldorff, 1997),
s a widely applied spatial statistical approach to separate regions
ith different patterns in event detection (e.g., disease surveillance). It

identifies if there exists a spatial region with a significantly higher rate
of generating incidents or cases of certain events (e.g., disease, crime)
ompared to the rest.

On the input side, MSS takes binary values of different event types.
For example, in disease monitoring, whether an individual has a certain
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Fig. 2. A high-level illustration of the Geo-RF framework. Geo-RF uses a hierarchical partitioning process and the final number of partitions is determined through statistical tests.
New RFs are created for each new partition to allow different functional relationships X → y to be learned for data following different processes. This further allows gradual
enhancement of classification quality as illustrated in the last row. The minimum units used for space-partitioning can be specified by users, and by default Geo-RF uses a grid to
create the units, which is described in Section 2.3.2.
Fig. 3. The workflow chart describing the key steps of Geo-RF, including bi-partitioning optimization, significance testing and the hierarchical partitioning process to obtain a
flexible number of partitions. The number of partitions needed is controlled by the significance testing procedure.
symptom is defined by a binary value. In the context of Geo-RF,
the event is represented by prediction errors, i.e., whether the model
made a mistake classifying a sample point. The prediction errors are
estimated using samples from a validation set, which is formed by
a subset of samples separated out from the training set. Specifically,
we held out 20% of the training samples for the validation. To avoid
confusion, there is no overlap between this validation set and the test
set, where the test set is reserved for the final performance evaluation
and completely excluded from the training process. Denote 𝑅𝐹 𝑝𝑟𝑒 as the
RF model trained using all data points in the current area (i.e., prior
to bi-partitioning). A data point is marked as ‘‘1’’ if 𝑅𝐹 𝑝𝑟𝑒 makes an
incorrect classification at the point, and otherwise ‘‘0’’. If all data
points from the current area follow homogeneous or similar functional
relationships X → y, we expect the error distribution for each class
– based on the predictions by the single model 𝑅𝐹 𝑝𝑟𝑒 – to be more
homogeneous over the area. On the contrary, if the data points follow
4 
different functional relationships X→ y in the area, we expect the error
distribution predicted by this single model to be more heterogeneous.
This allows us to establish a proxy of the functional relationships X →

y using the classification performance of the RF model, which are
otherwise not directly observable from the dataset itself with only X
and y.

Under this representation, denote 𝑐𝑘,𝑚 and 𝑏𝑘,𝑚 as the observed and
expected (baseline) number of errors for class 𝑚 at a spatial location
𝑠𝑘, respectively; where 𝑚 = 1,… , 𝑀 and locations will be defined
by the spatial units used for partitioning (e.g., grid cells) which will
be formally defined in Section 2.3.2. The expectation or baseline 𝑏𝑘,𝑚
can be calculated by 𝑏𝑘,𝑚 = 𝐶𝑚 ⋅

𝑛𝑘,𝑚
𝑁𝑚

, where 𝐶𝑚 is the total number
of misclassified samples of class 𝑚, 𝑛𝑘,𝑚 is the total number of data
points of class 𝑚 at location 𝑠𝑘, and 𝑁𝑚 is the total number of data
points in the current area. If 𝑐𝑘,𝑚 is similar to 𝑏𝑘,𝑚, then there is
likely nothing unusual for the current area. Based on these, we can
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obtain a concrete mathematical formulation of our null and alternative
ypotheses 𝐻0 and 𝐻1 introduced earlier. Specifically, 𝐻0 states that

the error distribution is homogeneous over space, and 𝐻1 states that
here exists a sub-region 𝑆 where the rate of generating errors is 𝑞𝑚
imes the expected rate under 𝐻0, i.e., the expectation in 𝑆 is 𝑞𝑚 ⋅ 𝑏𝑘,𝑚.

Note that this sub-region 𝑆, if truly exists, will be used to bi-partition
the space into to two sub-regions.

MSS estimates the log likelihood ratio1 of the two hypothesis 𝐻1 and
𝐻0 based on Eq. (1). The larger the likelihood ratio, the more likely the
alternative hypothesis 𝐻1 (i.e., variability) is true compared to the null
hypothesis 𝐻0 (i.e., no variability). In order to estimate the likelihoods,
MSS adopts the standard Poisson model for discrete point process (Neill
et al., 2013; Kulldorff et al., 2007), where the expectation of the Poisson
istribution at each location 𝑠𝑘 is 𝑏𝑘,𝑚 under 𝐻0. Based on this, we get

the log likelihood ratio as follows:

log𝐿𝑅(𝑆) = log Likelihood(𝐻1, 𝑆)
Likelihood(𝐻0, 𝑆) = log

∏

𝑠𝑘∈𝑆
∏𝑀

𝑚=1 Pr(𝑐𝑘,𝑚 ∼ Poisson(𝑞𝑚 ⋅ 𝑏𝑘,𝑚))
∏

𝑠𝑘∈𝑆
∏𝑀

𝑚=1 Pr(𝑐𝑘,𝑚 ∼ Poisson(𝑏𝑘,𝑚))

=
𝑀
∑

𝑚=1

(

𝐶𝑚,𝑆 log 𝑞𝑚 + 𝐵𝑚,𝑆 (1 − 𝑞𝑚)
)

(1)

where 𝑆 is the sub-region used to bi-partition the current area 𝑆𝑎𝑙 𝑙
nto 𝑆 and (𝑆𝑎𝑙 𝑙 − 𝑆), 𝐶𝑚,𝑆 =

∑

𝑠𝑘∈𝑆 𝑐𝑘,𝑚, and 𝐵𝑚,𝑆 =
∑

𝑠𝑘∈𝑆 𝑏𝑘,𝑚. The
derivation is provided in Appendix A.1 in the supplementary materials.

Next, the optimal estimation of the only unknown 𝑞𝑚 in the likeli-
hood can be obtained by maximizing the likelihood, i.e., the maximum
ikelihood estimate, with the solution:

𝑞𝑚 =
𝐶𝑚,𝑆

𝐵𝑚,𝑆
(2)

With the score formulated, the next goal is to find the optimal
ub-region 𝑆∗ that maximizes the score. This optimal sub-region 𝑆∗

epresents the region where the largest divergence of error distribution
to the expected distribution is observed statistically.

2.3.2. Searching for the optimal bi-partitioning
We leverage the fast subset scanning approach to find the optimal

sub-region 𝑆∗ for the bi-partitioning, where 𝑆∗ is one partition and
the rest forms the other. This method offers a fast-search algorithm to
vercome the computational challenge that the number of sub-region
andidates is exponential to the number of locations. In short, the
pproach will transform the search space from an exponential space
o a linear space to substantially reduce the computational cost.

The one and only prerequisite of this method is to construct local
groups of data points (e.g., pixels in a local grid cell as one group).
These groups can be considered as the spatial units used for the
partitioning and they are needed to calculate several basic statistics of
errors to enable the fast optimization process. In Geo-RF, we overlay a
grid on top of the study area, and all pixels within each grid cell form
 local group. This means that region 𝑆∗ will be formed by a set of grid
ells, and the flexibility of the shape of 𝑆∗ depends on the size of the
rid cells. In this work, we use a cell size of 0.5◦ × 0.5◦ and our grid
or CONUS has a size of 50 × 116, which allows the Geo-RF to create
airly flexible shapes of partitions as shown later in the experiments
n Section 4.2. Based on this grid, in Eq. (1), each location 𝑠𝑘 now
epresents a grid cell. Fig. 2 (first row) shows an example visualization
f the grid cells and partitions based on them.

With the grid cells 𝑠𝑘 as local groups, we use the linear-time subset
canning (LTSS) property (Neill et al., 2013) to find the optimal sub-

region 𝑆∗. Specifically, for Geo-RF’s score function log𝐿𝑅(𝑆) in Eq. (1),

1 The ‘‘log’’ here is commonly used – and necessary in most cases – to
reduce the magnitude of the ratio to a tractable range without affecting the
ranking (i.e., greater or smaller than) between different ratios.
5 
it has been shown that 𝑆∗ must be formed by the cells 𝑠𝑘 with the
highest rankings by the following ranking function (Neill et al., 2013;
Xie et al., 2021a):

𝛾(𝑠𝑘) =
𝑀
∑

𝑚=1
(𝑐𝑘,𝑚 log 𝑞𝑚 + 𝑏𝑘,𝑚(1 − 𝑞𝑚)) (3)

While the number of highest ranking cells is not certain, given 𝑁
cells there are at most 𝑁 possible numbers to consider (i.e., top 1, top
2, . . . , top 𝑁), so the search space is now linear to the number of cells.
However, one remaining issue is that we do not really know the right
𝑚 values to use here, as we need to know what the region 𝑆∗ is in
he first place to calculate the corresponding 𝑞𝑚 values using Eq. (2).
his means that to find 𝑆∗ using Eq. (3) we need to know 𝑞𝑚, but to

know 𝑞𝑚 we need to first know 𝑆∗, which becomes an endless loop. To
break the loop, we first make an initial seed/guess on the 𝑞𝑚 values,
and then use coordinate ascent to iteratively search for the 𝑞𝑚 and 𝑆∗.
Essentially, the 𝑆∗ found using the initial 𝑞𝑚 will be used to update 𝑞𝑚,
and the updated 𝑞𝑚 will in turn be used to update 𝑆∗. The process is
repeated till convergence, and more details can be found in Appendix
A.2.

2.3.3. Modifications for the background class
This section discusses the modifications we make available for Geo-

RF based on the characteristics of crop mapping, which may or may not
e necessary depending on specific application contexts. Specifically,
he modifications aim to address potential issues introduced by the
ackground class. For example, in soybean mapping, the vast majority
f pixels will have the background non-soybean class. As a result,
ncluding the non-soybean class in Eq. (1) will substantially reduce the
esponse from the log likelihood ratio to the error distribution of the

soybean class (i.e., the main class of interest). In other words, if data
points with the soybean class has a large number of errors, but the
quantity is insignificant compared to the number of points with the
non-soybean class, the log likelihood ratio – as a statistically aggregated
score over all points – may not be able to capture any interesting
spatial variability patterns about the model’s ability to predict the
soybean class. Thus, Geo-RF includes the flexibility of specifying the
set of classes being included or excluded for the calculation of the log
likelihood ratio.

2.3.4. Enhancing spatial contiguity of partitions
While most partitions are contiguous due to spatial autocorrelation,

there often exist standing-alone locations or small irregularities along
the boundaries of partitions, which tend to colocate with higher errors
during test. We describe the phenomenon as ‘‘spatial overfitting’’,
where certain locations are put to a different partition than most of
their local neighbors due to noises or limited representativeness of the
sample points for the other points at the location. To remove these
non-contiguous small fragmentations, we add a contiguity-refinement
module with local majority-voting to enhance the spatial smoothness
of the partitioning. Specifically, for each location, the refinement al-
gorithm looks at its local 3 × 3 neighborhood (i.e., cells in the grid),
nd assigns the majority partition among the cells (i.e., either 𝑆∗ or
on-𝑆∗) as the partition of the location in the final partition map.
y default, we repeat this contiguity-refinement step 3 times for the
artitioning result. We also empirically analyze the effect of the number
f repetitions in the experiments, which will be shown in Section 5.5.

2.4. Testing the impact of partitions on RF performance

An optimal bi-partitioning itself does not necessarily mean the func-
ional relationships X → y are different in the two partitions, because
n optimal 𝑆∗ can be found in any data, with and without variability.
hus, the next important step is to evaluate the actual impact of

the partitioning on the performance of the RF model. If significant
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improvements are observed after applying the bi-partitioning, we are
more confident that there does exist discrepancy in X → y that was
reating a bottleneck for the performance of the RF model. Otherwise,
f the local RF models built for the partitions do not provide additional
nhancements compared to the single RF model, that indicates the
rea is more likely to be homogeneous and no further partitioning is
ecessary. To evaluate this, we adopt the T-test to perform significance
esting. In the case of Geo-RF, the T-test considers the following two
cenarios: (1) A single RF model for the two partitions: This is the
aseline scenario or the ‘‘control group’’ for the testing, where no
reatment is applied to the RF model based on the bi-partitioning. In
his case, the RF model remains the same as before. (2) Two separate

RF models for the two partitions: This is the ‘‘experiment group’’ for
the testing, where we train two different RF models based on the bi-
partitioning, so each of the RF models can learn a different functional
elationship X→ y in case variability exists between the two partitions.

Denote the RF model for the baseline scenario as 𝑅𝐹𝑏𝑎𝑠𝑒, and the
two local RF models for the split scenario as 𝑅𝐹1 and 𝑅𝐹2, respectively.
The model results of the two scenarios are obtained from the combined
validation data points from the two partitions, which are from a subset
f training data points as described in Section 2.3.1 and not test data

points. For 𝑅𝐹𝑏𝑎𝑠𝑒, we simply obtain the classifications from the model
on the combined data points. For 𝑅𝐹1 and 𝑅𝐹2, we first separately
obtain the classifications of 𝑅𝐹1 on partition-1 (e.g., 𝑆∗) and 𝑅𝐹2 on
partition-2 (e.g., non-𝑆∗), and then concatenate their results together.
Since the data points involved in the comparison between the two
scenarios are the same, we use the dependent T-test (a.k.a. paired T-
test), which is specifically designed for this situation.2 Furthermore,

e are only interested in the case where the bi-partitioning can sig-
nificantly improve the performance. In other words, it is insufficient
or the two scenarios to be just significantly different as the case where
he base model 𝑅𝐹𝑏𝑎𝑠𝑒 is better does not validate the bi-partitioning.
hus, we use the upper-tailed dependent T-test for the significance
esting. Details of the test statistic and testing procedure are provided
n Appendix A.3.

If local models built from the bi-partitioning pass the testing, then
we accept the bi-partitioning and continue to run the bi-partitioning on
he resulting child-partitions in the hierarchical process. The partition-
ng process terminates at a partition if the bi-partitioning does not pass
he testing.

2.5. Local model building and selection

Each local RF model is trained using the data from its corresponding
artition to allow different models to learn different X → y rela-
ionships. Unlike the deep learning version (Xie et al., 2021a) where
hallow layer weights can be shared among different child-partitions
hat have the same parent, trees in RFs are learned independently with
andomness and different trees do not know or depend on each other.
hus, for Geo-RF all local RF models are also kept independent to better
lign with the nature of the model.

Next, for the RF model selection, the general principle is quite
intuitive: If a local model passes the significance testing, then that local
model will replace its parent model and be responsible for classification
tasks within its corresponding partition. Similarly, if its partition is
further split through the hierarchical process, it may get replaced by
local models trained for its child partitions.

With that said, there is an exception to this selection process.
As in Geo-RF each RF model is trained independently using its own
artition’s data points, there is no direct ‘‘inherit-and-finetune’’ process
hat exists in the deep learning version, where weights from the parent

2 As an example, when testing the effect of a treatment using the same pool
f participants, a dependent T-test aims to compare the indicators before- and
fter-treatment on the participants.
6 
deep learning model can be naturally used as pre-trained weights to
be finetuned at a child partition. Thus, it is not necessary that a local

F model built for a child-partition will always lead to improvements
ver the RF model trained for its parent partition. For example, the
ocal models 𝑅𝐹1 and 𝑅𝐹2 together may pass significance testing and

have significant improvements over their parent model 𝑅𝐹𝑏𝑎𝑠𝑒. How-
ever, it could be that all the improvements are from 𝑅𝐹1 whereas
the performance by 𝑅𝐹2 might decrease compared to 𝑅𝐹𝑏𝑎𝑠𝑒 due to a
smaller amount of data points available (i.e., there might be a trade-
off between local patterns and the representativeness/amount of data
points). Based on this, after each significance testing, we additionally
evaluate if the improvements are observed for both local models or
there is one model with reduced performance in its corresponding
artition compared to 𝑅𝐹𝑏𝑎𝑠𝑒. If it is the latter case, we keep using

𝑅𝐹𝑏𝑎𝑠𝑒 for that child-partition without the replacement. For example,
f the models pass the testing, but 𝑅𝐹1 has an improvement and 𝑅𝐹2
as reduced performance, we move forward with 𝑅𝐹1 for partition-

1 and 𝑅𝐹𝑏𝑎𝑠𝑒 for partition-2. In this case, 𝑅𝐹2 will be removed from
he hierarchical process afterwards and all its roles will be replaced by
𝐹𝑏𝑎𝑠𝑒 (i.e., 𝑅𝐹2 ← 𝑅𝐹𝑏𝑎𝑠𝑒).

3. Data

The dataset contains ∼7.8 million samples in total from the CONUS
area. As an overview, the inputs X to the model consist of: (1) 10
spectral bands from Sentinel-2 over 33 timestamps between January
to November, 2021; and (2) 3 additional terrain attributes from NASA-
DEM. The output y contains the crop labels from the CDL in 2021. The
details of the input and output are provided in the following sections.

3.1. Sentinel-2 satellite imagery

The Sentinel-2 Multi-Spectral Instrument (MSI) mission includes
isible bands, near-infrared bands, red-edge bands, and shortwave
nfrared bands, with high spatial resolutions up to 10 m. Following
he workflow established by Li et al. (2023), we downloaded Sen-
inel 2 A and 2B Level-2 A Bottom of the Atmosphere reflectance

images acquired between January to November in 2021, using the
cloud cover threshold of 80%. Based on the Sentinel-2 scene clas-
sification map, we merged categories of cloud shadows, thin cirrus,
snow, cloud with low, medium and high probability into cloudy pix-
els. In addition, we corrected the bidirectional reflectance distribution
function (BRDF) effects using the c-factor method to derive nadir BRDF-
adjusted reflectance (NBAR) images using the global spectral BRDF
model parameters from Roy et al. (2017a,b). We then resampled the
20 m spectral bands into 10 m resolution using the nearest neighbor
and created 10-day median composites, resulting in 33 compositing
intervals. We also implemented the temporal linear interpolation to
fill the data gaps following Griffiths et al. (2019). Furthermore, we
divided the CONUS into 934 1◦ × 1◦ tiles in geographic projection with
WGS84 datum with the spatial resolution of 0.0001◦ to approximately

atch a 10-m resolution pixel in Sentinel-2 and reprojected all Sentinel-
2 images from Universal Transverse Mercator (UTM) system to the
eographic projection. In total, 10 spectral band (i.e., blue, green,
ed, three red-edge bands, near-infrared, narrow near-infrared, and two
hortwave infrared bands) over 33 compositing intervals were used.

3.2. Topographic data

We downloaded NASADEM covering the CONUS and derived ele-
vation, slope and aspect as additional terrain variables for the Geo-RF
training. NASADEM is a collection of Digital Elevation Model (DEM)
and associated products derived from the Shuttle Radar Topography
Mission (SRTM), incorporating with the Ice, Cloud, and Land Elevation
Satellite (ICESat) and Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) (Buckley et al., 2020). Specifically, two
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datasets including the NASADEM_HGT for elevation, and the NASA-
EM_SC for slope and aspect were used. All the images were resampled

from 1 arc second to 0.0001 ◦ spatial resolution.

3.3. Cropland data layer

CDL maps are crop-specific land cover products over the CONUS
generated by the USDA’s National Agricultural Statistics Service (NASS).
Quality-wise, the CDL product has high accuracy for major crop types,
and the accuracy in most areas is close to 95% according to the CDL

etadata (USDA-NASS, 2023; Cai et al., 2018). Because of this, CDL
as been a valuable dataset widely used in remote sensing research
or algorithm testing and evaluation (Cai et al., 2018; Ma et al., 2024;

Johnson and Mueller, 2021). In contrast, CDL does tend to have lower
accuracy for other non-major crops. Thus, in this study we consider five

ajor crops (i.e., corn, soybean, wheat, rice and cotton) and derived
heir labels from CDL 2021. We used a systematic sampling method
ith a spacing of 1 km to generate a CONUS sample, and extracted the

crop cover information from CDL over the sample locations.

4. Results

4.1. Experiment settings

By default, we use a train-test split of 0.4–0.6, where 40% of samples
are used for training and the rest 60% are used for testing. We also
onsider the following hyperparameters: (1) model complexity (by the
aximum tree depth), (2) ensemble size (by the number of trees),

3) train-test splits, (4) the maximum spatial partitioning depth al-
owed, and (5) spatial contiguity. These parameter values will be varied
e.g., ∼4-5 different values) and evaluated on all five crop classification
asks, resulting in a total of 110 sets of experiment results to offer a
ore comprehensive picture of the model performances under different

ettings. When varying one parameter, the default values for the other
yperparameters are: ‘‘unlimited’’ for the maximum tree depth, 100 for
nsemble size, 0.4–0.6 for train-test split, 4 for the maximum spatial
artitioning depth, and 3 (the number of repetitions for smoothing) for
patial contiguity.

The testing samples used for evaluation are fixed across the exper-
ments using the above default train-test split setting (i.e., 60% of the

data, which is about 4.68 million samples), except for the sensitivity
analysis on different train-test splits in Section 5.3.1.

For the metrics we used the F1 score, which is the harmonic mean
f precision (user accuracy) and recall (producer accuracy), i.e., 𝐹1 =
∕(𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛−1 + 𝑟𝑒𝑐 𝑎𝑙 𝑙−1).

4.2. Learned geographic partitioning and improvements

Fig. 4 summarizes the geographical partitioning automatically gen-
erated from Geo-RF’s partitioning process for soybean, corn, wheat,
rice, and cotton, respectively. As explained in Section 2.3.2, in this
work we use a grid with cells of size 0.5◦ × 0.5◦ as the local groups, and
he cells are the smallest units for partitioning the space. In addition,

Fig. 4 also includes the counts of pixels (i.e., sampled from CDL) for the
orresponding crop in each 0.5◦ × 0.5◦ grid cell to show the geographic
istribution of the crop as a visual reference. Finally, the right column
hows the performance enhancements brought by Geo-RF’s variability-
wareness, where the values are the improvements of F1 scores on the
orresponding crop compared to RF on test samples at each 0.5◦ × 0.5◦
rid cell. In this column, the cells with little production of correspond-
ng crops (i.e., cell values smaller than 100 in the distribution shown
n the middle column) are masked out for the visualization to make it
asier to see the meaningful patterns. Otherwise, it is very easy to see
arge improvements (or in some occasions reductions) that are caused
y just a few samples, which are less interesting. For example, a 0.5◦ ×
.5◦ cell with 10 true positive samples of corn for testing could show a
 P
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significant improvement if only one more sample is correctly classified.
Fig. 5 also provides the histograms of the F1 score improvements for
the masked cells for each of the crops.

According to Fig. 4 (a1), there are five geographic partitions gen-
erated for corn, excluding the non-CONUS area 𝑃0. The first major
observation is that the major production areas of corn (partitions
𝑃2 to 𝑃5) are separated from the background low-production areas
(𝑃1). Statistically, this aligns with our expectation as the likelihood
of a crop-like pixel belonging to corn can differ significantly in major
and non-major production areas. Geo-RF’s decision to separate these
two areas indicates that there are likely non-corn areas (e.g., other
cereal crops) in the non-major production area of corn whose spectral
characteristics are similar to those of corn in its major production area,
making it challenging for RF to distinguish between them. As a result,
this separation can help mitigate potential confusion between these
pixels with similar spectral characteristics and improve classification
performance. Some potential factors creating such cross-region vari-
ability can also be attributed to differences in terrains and climates
(e.g., mountainous terrain and arid climate in the Western US, and the
outheast’s subtropical to tropical climate), and different likelihoods

of different crops that appear similar in satellite images (e.g., due to
farmers’ preferences or local policies). Additionally, we observe that
partitions 𝑃3 and 𝑃5 align with the Corn Belt region, where climatic
and environmental conditions such as warm nights, deep/fertile soil
with high moisture-holding capacity, and flat terrain are ideal for corn
production (Corn Belt, 2024). Comparing the two, 𝑃5 covers more of the
xternal areas of the Corn Belt, where the proportion of non-corn types

of crops (e.g., soybean) starts increasing. As we can see in Fig. 4(c1),
the partitioning leads to about 0.1 to 0.2 improvement in F1 scores for
local regions in 𝑃5. Finally, 𝑃4 in Fig. 4 (a1) covers regions with less
favorable conditions for corn, such as rough terrains, drought and cold
weather. In these areas, the features of corn pixels could overlap with
the features of non-corn pixels in areas with ideal conditions. Moreover,
considering that the quantity of positive corn samples in 𝑃4 is relatively
small according to Fig. 4(b1), combining it with areas such as 𝑃3 and
𝑃5 could make corn pixels in 𝑃4 less likely to be detected. Thus, this
partitioning leads to a large improvement in F1 scores (∼0.2 to 0.3) as
shown in Fig. 4(c1).

Similar patterns of partitioning can be seen in the other types
of crops, where major production areas are first separated out, and
then finer-scale partitions within major production areas are further
captured. There are several interesting observations for soybeans. Ac-
cording to Fig. 4(a2), the partition 𝑃7 around downstream Mississippi

iver and western Mississippi state is separated out, which leads to
 major improvement in F1 scores for about 0.10 to 0.25. As a more
oncrete example, for the 0.25 increase, the F1 score went from 0.57
o 0.82 at certain locations. Compared to the other major production
reas (e.g., Midwest US), 𝑃7 around Mississippi has more exposure to
onditions such as drought or excessive rainfall, and its soil properties
ave different characteristics. As a result, models that work better for
he other areas tend to not work so well for the region, and vice versa.
n addition, we can see the Midwest area is merged with the non-major
roduction area in partition 𝑃1 (i.e., the partitioning process did not see
ignificantly distinct behaviors during training and kept them as one).
his indicates that the signature for soybean is potentially stronger
e.g., less confusion with other types of crops), making it relatively
asier to distinguish it from non-soybean pixels.

For wheat, one interesting observation is the separation of partition
3 in the northern part. The region is unique compared to the other
reas as the climate conditions are both colder and drier and the wheat
n this region consists of a mixture of winter wheat and spring wheat.
hese differences in 𝑃3 mean that the spectral characteristics of wheat
ixels are likely different from those in the other areas, including
ts adjacent neighbors which are more dominated by spring wheat.
erformance-wise, 𝑃 does benefit significantly from the partitioning
3
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Fig. 4. Visualization of results. Column 1 shows automatically identified space partitioning for each crop, where the numbers represent partition IDs, and 𝑃0 is the no-data area.
Column 2 is the distribution of crop pixel counts, where the count value of each grid cell is the number of sampled CDL pixels corresponding to the crop in the 0.5◦ × 0.5◦ cell.
Column 3 shows the F1 score improvements by subtracting RF’s F1 scores from Geo-RF’s F1 scores across grid cells. Each row represents one of the five crops: (1) corn, (2)
soybean, (3) wheat, (4) rice, and (5) cotton.
with its F1 score being increased by 0.1 to 0.15. In general, the
separation also leads to major enhancements around the Kansas area.

For rice and cotton, we can see their production areas are relatively
smaller compared to corn, soybean, and wheat. For rice, the first
partitioning involves the separation of major rice-producing regions
from the rest of CONUS (𝑃1). In subsequent partitioning, the rice
region in the Gulf Coast (𝑃2) is further separated out. Compared to 𝑃3,
𝑃2’s coastal subtropical climate with higher temperature and humidity
levels can affect the physiological processes of plants, potentially influ-
encing the spectral patterns. As shown in Fig. 4 (c4), the effectiveness
of the partitioning is demonstrated by major F1 score improvements
for about 0.30 in certain areas of 𝑃2, and about 0.20–0.45 in many
areas of 𝑃3 (as examples, the F1 scores increased from 0.59 to 0.88,
and from 0.33 to 0.80, at two grid cells, respectively). For cotton,
interestingly Fig. 4 (a5) shows that the Northwest Texas cotton region is
partitioned into 3 parts: 𝑃2, 𝑃3 and 𝑃4, corresponding to three primary
cotton regions in Texas: Rolling Plains, South Plains, and Panhandle,
respectively (Texas A&M Agrilife Extension, 2024). The cross-region
variability could be attributed to the differences in terrain, elevation,
crop density, and relay cropping practices. Quantitatively, these parti-
tions also result in major enhancements, demonstrated by a consistent
increase of F1 scores of about 0.2, 0.2 and 0.25, respectively, for 𝑃 , 𝑃 ,
2 3
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and 𝑃4. Finally, 𝑃5 covers an area in Georgia where soil properties differ
from other regions by being more acidic, and management practices
such as liming are commonly used to create optimal conditions for
cotton growth. This region also benefited from the partitioning with
a 0.18 improvement in F1 score as shown in Fig. 4 (c5).

Finally, it is worth-noting that the above descriptions about the
partitions mainly aim to serve as potential interpretations of the de-
cisions made by the data-driven partitioning optimization algorithm.
In practice, the partitions may not necessarily align with the major
or low production areas; regions with the same or different climate
characteristics; etc. For example, if the machine learning model does
not find difficulty in making correct predictions on samples from dif-
ferent climate regions (i.e., the X→ y relationship can be approximated
by a single model), then the regions will not be separated. Thus,
enhancing the interpretability of the partitioning decisions could be a
valuable future research direction to help better understand the causes
of the partitions, which is analogous to interpreting the classification
decisions made by the machine learning models.

4.3. Ability to capture controlled regions in synthetic data

This section aims to better validate the ability of Geo-RF to separate
regions with different X → y relationships using semi-synthetic data
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Fig. 5. Histograms showing the distribution of the F1 score improvements in the third column of Fig. 4 for the five types of crops. The frequency is represented by the proportion
of cells in each bin. At this aggregated level over CONUS, the more significant improvements can be observed for wheat, rice and cotton.
Fig. 6. (a) shows Geo-RF’s automatic separation of the artificially-inserted region where the X→ y relationship is made different by swapping y labels of points in the region while
keeping X unchanged (i.e., changing ‘‘corn’’ to ‘‘non-corn’’, and vice versa). The two visualizations are the intermediate steps from Geo-RF’s hierarchical partitioning process. We can
see Geo-RF successfully separated the region from others in the bottom figure. (b) shows the distribution of positive corn pixels via counts aggregated over grid cells. This highlights
the artificially-inserted region, which became the area with the most corn pixels. (c) shows the significant improvements of F1 scores (∼0.75) with the variability-awareness offered
by Geo-RF.
based off the original CONUS data. Specifically, we insert an artificial
region into the corn classification task, where we enforce the points in
the region to have a different X→ y relationship than the outside points
by swapping the y labels while keeping X unchanged (i.e., changing
‘‘corn’’ to ‘‘non-corn’’, and vice versa). In this way, features that previ-
ously correspond to non-corn in the region become indicators of corn.
The goal is to see if Geo-RF is able to automatically capture this region
during the partitioning process under this controlled setting. Fig. 6(b)
shows the artificially-inserted region, where the previous dark area in
Fig. 4(b1) now becomes an artificial major production area of corn.
Fig. 6(a) shows the first two partitioning steps of a branch (i.e., Root
9 
→ Partition ‘‘Blue’’ → Partition ‘‘Green’’) in the hierarchical partitioning
process. We can see that Geo-RF successfully identified that the region
has a different X → y relationship and separated it out at the second
step. Fig. 6(c) shows the large F1 score improvements (∼0.75) ob-
tained with the variability-awareness of Geo-RF in the inserted region,
compared with RF.

4.4. Summary of results with varying parameters

Figs. 7 to 11 show the results of Geo-RF and RF under different
parameter settings, and the results correspond to each type of crop are
shown in individual sub-figures. The 𝑋-axis shows the values of the



Y. Xie et al. Remote Sensing of Environment 319 (2025) 114585 
Fig. 7. Results by varying the maximum tree depth for different types of crops.
Fig. 8. Results by varying the maximum number of trees for different types of crops.
parameter being varied, and the 𝑌 -axis shows the F1-score. The detailed
numbers are provided via the tables in the appendix. The general trend
is that Geo-RF has higher F1 scores than those of RF in the vast majority
of scenarios. The overall improvements are larger for rice and cotton,
which have relatively smaller number of positive samples (i.e., samples
belong to the crop type) compared to the other crops. The patterns are
consistent across Figs. 7 to 11 with different varying parameters on tree
depth, ensemble size, partition depth, train-test splits, and the number
of regularization rounds. Here we mainly provide an overview of the
results. In Section 5, we will discuss the effects of each parameter in
details to better understand their choices in practice.

In addition, the results shown in the figures are the aggregated
scores over all the test pixels in CONUS. As a result, while in some cases
the overall improvements seem not as large (e.g., for corn and soybean
in certain settings), the improvements in the local regions/states are
significant as shown in the (c) column of Fig. 4. For example, as shown
in Fig. 4 (c2), the F1 score of soybean classification near downstream
Mississippi increased by about 0.10 to 0.25. The major improvements
10 
in local regions also align with the design of Geo-RF, which aims
to address the drops in solution quality caused by differences across
geographic regions. In other words, without variability-awareness, the
model may have to compromise the solution quality in certain geo-
graphic regions when optimizing the others. It is worth-noting that
ensuring high mapping quality across geographical regions is highly
important in applications, and inaccuracies in certain areas could also
lead to biases for downstream analysis and policy making. When look-
ing at the aggregated numbers overall, these significant improvements
in sub-regions (e.g., in the Mississippi area for soybean) are diluted.
In the results, we visualize the improvements in Fig. 4 under the
default setting and keep the aggregated numbers here to focus on the
variations of model performances with different parameters. In Fig. 12,
we also provide two examples of comparisons between Geo-RF and RF
at local regions to better demonstrate the sub-region improvements.
The sub-regions are highlighted by the boxes and the corresponding
performance statistics on the test samples are presented in the bar
charts. We can see that Geo-RF was able to significantly increase the



Y. Xie et al. Remote Sensing of Environment 319 (2025) 114585 
Fig. 9. Results by varying the train-test split for different types of crops. The amount of test data varies here and the percentage is one minus the training data percentage. This
is the only set of experiments where the test data varies.
Fig. 10. Results by varying the maximum partitioning depth for different types of crops. This parameter is only applicable to Geo-RF so the results are fixed (flat) for RF in each
sub-figure.
number of correct classifications of the crop samples and reduce the
number of missed classifications. In particular, the F1 scores for the
sub-regions increased from 0.70 to 0.81 for soybean and from 0.66 to
0.87 for rice, as shown in the bar charts.

5. Discussion

5.1. Effects of model complexity

In this sensitivity analysis, the model complexity is represented by
the maximum tree depth allowed for each decision tree in the RF. Ac-
cording to Fig. 7, Geo-RF’s most significant improvements over RF are
observed in cotton and rice classification tasks. These two crops cover
smaller areas but are distributed over broad geographic regions, making
their overall performance statistics more affected by spatial variability.
Specifically, the overall differences range from 0.175 to 0.31 for rice
11 
and 0.097 to 0.12 for cotton. Increasing the model complexity generally
results in better performances for both Geo-RF and RF in all crop types.
For example, the Geo-RF has a consistent increase of F1 score in corn
(from 0.8501 to 0.8703), rice (from 0.7286 to 0.7691), and cotton
(from 0.5818 to 0.7287). Thus, we recommend setting ‘‘No Limit’’
for the maximum tree depth. One interesting observation is that in
general Geo-RF has a stronger ability to maintain a good performance
with different tree depths (model complexity), and very often Geo-RF
with a tree depth of 10 or 20 can reach similar or better performance
compared to RF with an unlimited depth. In contrast, RF tends to have
significantly reduced performance with smaller depth.

5.2. Effects of ensemble size

Fig. 8 shows the performance of Geo-RF and RF on different datasets
with varying ensemble sizes, ranging from 1 to 200. We observe that
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Fig. 11. Results by varying the number of regularization rounds in Geo-RF for different types of crops. This parameter is only applicable to Geo-RF so the results are fixed (flat)
for RF in each sub-figure.
Fig. 12. Examples of local performance statistics using (a) soybean and (b) rice. In each sub-figure, the left-side shows the sub-regions using boxes in maroon and the background
is the F1 score improvements from the third column in Fig. 4. The bar charts show the corresponding performance statistics in the sub-regions. In the legend, ‘‘Correct’’ represents
the number of test samples belonging to the crop that was correctly classified by the method, ‘‘Missed’’ represents the number of test samples belonging to the crop that the
method failed to identify, and ‘‘Incorrect’’ means the number of test samples that the method classified as the crop but are not. The F1 scores calculated based on the statistics
are also shown at the top of the bars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
overall larger ensemble sizes result in better F1 scores and accuracy
for both models in all crops. Larger ensemble sizes increase model
diversity, reduce variance, and improve model robustness, allowing
models to generalize better on test data. However, we can observe
that the performance enhancement gradually becomes smaller as the
number of trees increases, and the enhancements from 100 to 200 trees
are in general very small. Thus, we recommend 100 trees considering
the trade-off with computational time, and 100 is also the default
setting in most libraries for RF. For all experiments, we observe that
Geo-RF achieved a much better F1 score, and a higher accuracy,
12 
compared to RF, except on two occasions where the number of trees
is 1 for corn and soybean. When only a single tree is created with
bootstrapping, the variability captured is likely not representative and
as a result reduces the performance slightly. However, this does not
raise concern as in practice the ensemble size will be greater than 1 and
here we only show this extreme setting to help understand the impact.
When the number of trees is greater than 1, Geo-RF outperforms RF
in all crops. Similar to the previous analysis on tree depth, the largest
overall performance gaps between Geo-RF and RF are for rice and
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Fig. 13. Results for scenarios with limited numbers of training samples (K: thousand; M: million). The numbers of samples contain both training and testing samples, and the
numbers of positive samples for the crops can be substantially smaller. For example, for cotton, the numbers of positive samples are 69; 1,419; 4,079; and 6,755 for the total
numbers of samples at 10,000; 200,000; 600,000; and 1,000,000; respectively.
cotton, where the aggregated scores correlate more strongly with the
improvements in local regions and states.

5.3. Effects of training data size

5.3.1. Varying train-test splits
We trained Geo-RF and RF on four training set ratios: 0.2, 0.4, 0.6,

and 0.8, and measured the performance using the remaining data in
each experiment.

Fig. 9 shows that as expected increasing the training set ratio
generally leads to higher test F1 scores in both models. The improve-
ments brought by a larger training set ratio were smaller for corn,
soybean and wheat, potentially because their associated positive sam-
ples are larger and already representative at smaller ratios. In con-
trast, the effects on rice and cotton are much greater. We can see
Geo-RF consistently achieved improvements over RF under different
train-test ratios with the variability-awareness. The largest overall im-
provements were observed for rice and cotton, ranging from 0.0991
to 0.1748. This indicates Geo-RF’s stronger ability in scenarios with
limited observations.

5.3.2. Scenarios with limited samples
To better understand the model’s performance in scenarios with

limited observations, we further carried out the following evaluation
cases with the following numbers of training samples: 10,000; 200,000;
600,000; and 1,000,000. The number 10,000 added at the beginning
represents a very data-sparse scenario at the CONUS scale. It is also
worth-noting that the numbers of samples listed above are the total
numbers covering both positive and negative samples, and the numbers
of positive samples (i.e., crop pixels) are substantially smaller. For
example, for cotton, the numbers of positive samples are 69; 1,419;
4,079; and 6,755. For rice, the numbers are 25; 289; 821; and 1,357. At
the CONUS scale, this means many states may only have a few or tens
of examples of the crops, which are very difficult conditions for model
training. For each of the other three crops that are relatively more
produced, the number of positive samples ranges from a few hundred
to several tens of thousands in total for training. In this evaluation,
the test samples are fixed using the default 60% of data described in
Section 4.1. The results are shown in Fig. 13. According to the figure,
the general trends are similar, and Geo-RF shows improvements in
13 
most of the scenarios. This is important for Geo-RF, as having a very
limited number of samples makes it more challenging for variability-
aware learning, given the need to recognize and harness different
functional relationships X → y. From the results, we can see that Geo-
RF is able to improve the performance or maintain the same level
of performance compared with RF, when only very limited amounts
of samples are available. In particular, Geo-RF continues to show
significant improvements for rice and cotton. For example, for cotton,
Geo-RF’s performance with 600,000 samples (0.61) already surpassed
RF’s performance with 1 million samples (0.56) on the same set of the
default 4.68 million testing samples.

In practice, if the number of samples is very limited but their
functional relationships are highly different (i.e., the partitioning al-
gorithm is able to statistically confirm it through significance testing
with limited samples), then Geo-RF is expected to be able to sepa-
rate the regions. However, if the number of samples is very limited
and the differences between their functional relationships cannot be
statistically confirmed, then technically it is not feasible for Geo-RF
to separate the regions. This work focuses on the scenarios when
training data is not a practical limitation, and future developments are
needed for scenarios with very sparse training data. In addition, as a
general context, the amount of training samples used for large-scale
crop mapping (e.g., national or continental) is often on the larger-end
of the numbers we considered here. While the labeling process via
field surveys or local collaborations tends to require substantial effort,
these activities are often carried out at scale to ensure data represen-
tativeness and the quality of the mapping products. For example, we
used over 2 million samples for training the classification tree when
creating the US national soybean map (Song et al., 2017), and used
about 3 million training samples for mapping soybean expansion in
South America (Song et al., 2021). Similarly, about 2.9 million sam-
ples were collected for crop mapping in three administrative regions
in Ukraine (Gallego et al., 2014), and about 252,000 samples were
collected in a smaller sub-region of it covering the Joint Experiment
for Crop Assessment and Monitoring test sites as part of the GEOGLAM
global crop monitoring initiative (Shelestov et al., 2017).

5.4. Effects of maximum allowed depth of partitioning

The maximum allowed depth of space-partitioning (i.e., from the
root study area to the leaf partitions through the hierarchical process
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of Geo-RF) controls the number of splits and thus the number of spatial
partitions. This is independent of the maximum tree depth used for RF
analyzed in Section 5.1. While a greater number of spatial partitions
allows Geo-RF to have higher flexibility to capture heterogeneity with
greater details, it is also more likely to lead to ‘‘spatial overfitting’’,
meaning that the partitioning may be less likely to generalize to the
test data. The maximum partitioning depth can be considered as an
xtra layer of control in addition to the significant testing introduced
n Section 2.4. Fig. 10 shows that increasing maximum partition depths,
n general, allows Geo-RF’s F1 score to improve. This likely is the
ffect of significance testing, which helps prevent spatial overfitting
y terminating the partitioning process if new partitions do not lead
o statistically significant improvements of performance. Lastly, we
bserve that for all settings of maximum depth of partitioning, Geo-RF
chieves higher F1 scores than the baseline RF for all crop types.

5.5. Effects of spatial contiguity regularization

As described in Section 2.3.4, the spatial regularizer aims to produce
more spatially contiguous partitions by smoothing out local fragmen-
tation. This is another measure used to reduce the chance of spatial
overfitting in Geo-RF. To better understand the effects of spatial reg-
ularization, we train and analyze Geo-RF using different numbers of
regularization rounds, ranging from 0 (no regularization) to 7. The re-
sults are shown in Fig. 11. Compared to the un-regularized version with
‘‘Regularization Rounds’’ = 0, we can see that Geo-RF’s performance
improves with the introduction of spatial regularization (‘‘Regular-
ization Rounds’’ = 1) in all crops other than cotton (from 0.732 to
0.730). For example, for rice, a single round of spatial regularization
results in the best F1 score of 0.781, compared to the non-regularized
model’s score of 0.757. In general, we can see one round of spatial
egularization is most stable and effective across different types of
rops. It has the best performance in three out of the five crops, and
n the other cases are within 0.005 of the optimal choice. While one-
ound can be a good choice, the other trend is that increasing the

regularization rounds generally does not reduce performance by much
(e.g., for corn the difference between 7 and 1 is only 0.0001), except
for rice. The reason behind the different pattern for rice is likely due
to the small size of its partitions, as shown in Fig. 4(a4). When the
partitions are very small, smoothing could have larger impacts on the
learned partitions and lead to major changes to the partitioning. For
the other crops that have much larger partitions, more smoothing is
overall beneficial.

5.6. Computational time

Here we compare the computational time of Geo-RF and RF. The
expectations are: (1) Geo-RF intrinsically requires more time in the
training phase, as Geo-RF uses RF as a base model before performing
the partitioning and building local models. The additional training time
for each of the new partitions should be smaller than the time needed
or training the original model, as each model only considers a subset
f the original data. (2) Once Geo-RF is trained, its execution time in
nference should be similar to RF, as each sample will only go through
ne local RF based on its location.

Fig. 14 shows the execution time for training and testing for five
ypes of crops with different amounts of training data. As the major
ifferences will be for training, we considered different numbers of
raining samples: 200,000; 600,000; and 1,000,000. The testing set is

kept the same as the default, i.e., 60% of the overall data with about
4.68 million samples. The experiments are carried out using AMD EPYC
Processors with 32 cores. According to the results, the trends aligned
well with the expectation: Most of the differences are observed during
training, and the testing time costs are about the same for Geo-RF and

F. In terms of training, in general Geo-RF is about one to three times
ore expensive compared to RF. For example, the total training time
14 
for soybean with 1,000,000 samples is 230.6s for Geo-RF and 114.3s
or RF, whereas the testing time on the testing data is 15.6s and 12.6s,
espectively.

The computation for training can be further enhanced in future
work for applications that are sensitive to training time. For example,
 phased approach can be considered, where a subset of data can be
sed to generate the partitioning first to reduce training time spent
n intermediate models for non-final partitions in the hierarchical
artitioning process. Then the local models can be built based on the
artitions using the complete dataset.

5.7. Broader applicability

Beyond crop mapping in CONUS, Geo-RF can be applied to different
types of remote sensing data and use cases. Based on different applica-
ion scenarios, certain settings may need to be considered and adjusted.
or example, if the study area mostly consists of small and fragmented
ields for crop mapping, a higher-degree of variability may exist at
maller scales (e.g., due to frequent changes of local environment
onditions). In such scenarios, a finer grid would be more suitable
or the partitioning to capture more fine-grained variability. If the
tudy area consists of sub-regions with different degrees of variability,
sers may also use different grid cell sizes in different regions when
efining unit groups. In addition, the settings for the spatial contiguity
odule such as the number of regularization rounds may also need

o be adjusted to adapt to these regions. If the input study area itself
s fragmented and has large empty gaps between the fields, users can
pecify the grid cells covered by the gaps as empty and the algorithm
ill automatically skip them during the partitioning. For convenience,

he implementation of Geo-RF will be open-sourced on GitHub, and
he URL is included in Data Availability. As discussed in Section 2.3.2,

the main task users need to do as a preprocessing step is to define
he unit groups for partitioning (e.g., using a grid) and the rest of

the partitioning process, local model training, and prediction will be
andled automatically.

5.8. Multi-class mapping

While Geo-RF can be directly used for multi-class classification,
we used binary classification for each of the five types of crops to
better control the factors that may otherwise affect the partitioning
of space. For example, the number of samples from different types
of crops could make the partitioning more responsive to crops with
greater numbers of samples, while paying less attention to the other
crops. This could make it more difficult to interpret the results and
analyze the partitionings. Thus, in the experiments we chose the cleaner
inary examples for better clarity. In practice, binary classification

is also a common strategy used for large-scale crop mapping. For
example, Li et al. (2023) created a maize and soybean map in China
by combining two binary classifications (soy vs. non-soy, and maize
vs. non-maize). Similarly, Potapov et al. (2022) used global Landsat
ata to map each thematic land cover and land use class and combined
hem into a multi-class global land cover map product. With that said,

direct multi-class classification is an interesting and worth-exploring
future direction and new designs can be developed to better separate
the factors affecting the partitioning. For example, new constraints can
e added to the partitioning optimization formulation to control the
alance and representativeness over different classes.

6. Conclusions

This paper proposed a variability-aware Geo-RF that has the ability
to automatically identify geographic regions with different functional
relationships between input features (e.g., spectral band values) and
target class labels to enhance the classification quality. A case study
was carried out for major crop classification using over 7 million
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Fig. 14. Computational comparisons including both time for training and testing. The number of training samples is varied, and the test set is fixed.
samples from CONUS for five major crops, i.e., corn, soybean, wheat,
rice, and cotton. Experiment analyses were carried out for the space-
partitionings learned for different types of crops and the performances
of the model under different conditions, as compared to RF without the
variability-awareness. The results showed significant improvements of
prediction quality in many partitions (e.g., states) where the physical
conditions such as climate characteristics are different from the others.
For example, the partition around downstream Mississippi for soybean
classification improved the F1 scores in some local regions from 0.57
to 0.82, and the partition in Arkansas for rice classification led to F1
scores increasing from 0.59 to 0.88 at some locations. The sensitivity
analyses also showed the effects of different hyperparameter choices,
with recommendations including using unlimited tree depth. Geo-RF
also showed stable performance compared with RF in scenarios with
limited data. Finally, Geo-RF took about one to three times more time
than RF during training, while the time for the testing phase remained
nearly the same.

Future research directions will explore interpretable methods to
understand the data-driven partitioning, new designs to further en-
hance the computational efficiency of the model for time-sensitive
applications, new transfer learning or knowledge-guided extensions for
scenarios with very sparse training data, new optimization formula-
tion to better model partitioning over multiple classes, and compre-
hensive comparisons between different paradigms of learning models
(e.g., tree-based models, deep learning and foundation models).
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