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A B S T R A C T   

Spatially explicit information on crop distribution is essential for market information, food security, and agri
cultural sustainability. However, high-resolution crop maps are unavailable for most countries of the world. In 
this study, we developed an operational workflow and produced the first openly-available 10-m resolution maize 
and soybean map over China. We also derived area estimates for maize and soybean extent for 2019 using a 
stratified, two-stage, cluster sampling design and ground data collected for the entire country. We developed a 
multi-scale, multi-temporal procedure for mapping, in which field data were used as training to map maize and 
soybean over the first-stage sample of 10 km × 10 km equal-area blocks with PlanetScope and Sentinel-2 data. 
Then, the classified blocks were used as training to map maize and soybean for the country with wall-to-wall 
Sentinel-2 data using a random forests approach. We used all available Sentinel-2 surface reflectance data ac
quired between April and October 2019, applied quality assurance, including cloud and shadow masking, and 
created monthly image composites as inputs for the random forests analysis. We derived maize and soybean area 
estimates using the field sample data and a regression estimator. Utilizing the probability output layer of the 
random forests models, we found and applied empirical probability thresholds that matched map-based crop area 
estimates with sample-based area estimates. Maize area in China in 2019 was estimated to be 330,609 ± 34,109 
km2 (± value is the standard error), and soybean area was estimated to be 78,107 ± 12,969 km2. Validated using 
the field sample data as reference, our crop map had an overall accuracy of 91.8 ± 1.2%. The user’s and pro
ducer’s accuracies for the maize class were 93.9 ± 2.5% and 79.2 ± 3.6%, and for the soybean class were 63.6 ±
12.1% and 61.9 ± 11.8%. Our map-based maize and soybean area estimates had close agreement with gov
ernment reports at the provincial and prefectural levels, with r2 of 0.90 and 0.92 for maize, and 0.93 and 0.94 for 
soybean, respectively. Our workflow can generate internally consistent results for crop area estimation and crop 
mapping simultaneously. As Sentinel-2 data are being acquired consistently and very-high-resolution commercial 
satellite data are increasingly available, our established workflow may be applied in an operational setting for 
annual crop mapping in China and other countries.   

1. Introduction 

National-scale crop production information is traditionally acquired 
using statistical ground surveys. Although survey-based methods can be 

used to collect a large variety of agricultural data such as crop type, 
livestock, irrigation, field and soil conditions, they cannot provide 
spatially explicit information at high resolution. Survey-based methods 
are generally time consuming, labor intensive, and vary from country to 
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country (Benedetti et al., 2010). Freely available satellite Earth obser
vations offer a complementary method to obtain crop information at 
broad scales consistently across space and time and at low cost (Bégué 
et al., 2018; Weiss et al., 2020). However, distinguishing specific crop 
types (such as soybean, maize, wheat, etc.) accurately with satellite data 
is challenging, particularly over large areas with diverse crop types, 
heterogeneous field sizes and varying farming practices. Generating 
crop maps at national to continental scales requires high-quality satellite 
data, robust data processing, representative field data for training, field 
data from a probability sample for validation, as well as high- 
performance computing infrastructure (Song et al., 2021a). 

Satellite data with complete spatial coverage, adequate spatial res
olution, frequent temporal revisit and low cost are essential for crop 
mapping at broad scales. Currently available datasets that fit these 
criteria include those acquired by the Landsat and Sentinel series of 
satellites. Since the opening of the Landsat data archive in 2008 
(Woodcock et al., 2008), researchers and practitioners have explored 
Landsat data for crop mapping at 30-m resolution for many countries 
and regions, including the US (Boryan et al., 2011; Johnson, 2019; Song 
et al., 2017; Wang et al., 2020), Pakistan (Khan et al., 2021), Turkey 
(Rufin et al., 2019), Germany (Blickensdörfer et al., 2022) and South 
America (Song et al., 2021a). The 16-day revisit frequency of Landsat is 
sparse considering the relatively short growing season of annual crops, 
especially when persistent clouds exist. Thus, data from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) with daily revisit fre
quency are often used in conjunction with Landsat for mapping (Li et al., 
2022; Song et al., 2021a; Song et al., 2017; Zalles et al., 2019). 

The spatial resolution of MODIS and Landsat are coarse when applied 
to heterogeneous landscapes of small crop fields. As with Landsat, 
Sentinel-2 has complete global coverage and free data access. With twin 
satellites and a broader swath, Sentinel-2 has a higher revisit frequency 
of 5 days, finer spatial resolution of 10 m and 20 m, and more spectral 
bands, making it the best freely-available satellite data source for large- 
area crop mapping. Studies have shown that the red-edge bands of 
Sentinel-2 are particularly useful for crop mapping (Immitzer et al., 
2016; Song et al., 2021b) and that the 10-m resolution is capable of 
mapping smallholder systems in Tanzania and Kenya (Jin et al., 2019). 
Sentinel-2 data have been used to generate crop maps in recent years 
over Germany (Blickensdörfer et al., 2022; Preidl et al., 2020), and other 
European Union countries (Luo et al., 2022). Sentinel-1 Synthetic 
Aperture Radar (SAR) are also freely available, but large-area applica
tions of Sentinel-1 alone for crop mapping are rare, although d’An
drimont et al. (2021) provide a recent example over Europe. However, 
the combination of Sentinel-1 and optical data has been found useful in 
crop classification (Blickensdörfer et al., 2022; Kussul et al., 2020; Van 
Tricht et al., 2018). 

Commercial satellite data provide even higher resolution of 0.5–5 m 
(e.g., PlanetScope, WorldView, RapidEye, etc.), but they are often 
expensive, not openly accessible, or only publicly available in some 
regions such as the world’s tropics (NICFI, 2022). Using such datasets for 
large-area wall-to-wall crop mapping is challenging due to the large data 
amount and data-intensive computation. However, a sample of these 
very-high-resolution images could be utilized for area estimation when 
the full coverage is not affordable (Khan et al., 2018). 

Crop diversity is a primary challenge for crop mapping at national 
scales, especially for large countries such as China. Thus, ground data 
are crucial for mapping. Ground surveys are traditionally used to collect 
field data for statistical estimation based on sampling frames such as list 
frames, area frames and combination of multiple frames (FAO, 2015). 
List sampling frames are lists of farms derived from agricultural censuses 
whereas area sampling frames are sets of land segments (FAO, 2015). 
The sample area units or points in an area frame are inspected by enu
merators through direct interviews with stakeholders, sometimes sup
plemented with cartographic materials such as satellite imagery and 
aerial photography (FAO, 2018). In recent years, land cover products 
have been employed to automatically generate area frame strata to 

improve the sampling efficiency (Boryan et al., 2014). Stratified prob
ability sampling is highly effective to collect reference data for pro
ducing unbiased and precise crop area and map accuracy estimators 
(Gallego, 2004; Olofsson et al., 2014; Stehman, 2000). Currently, only 
some countries have used representative field data for operational large- 
area crop mapping such as the Cropland Data Layer (CDL) in the US 
(Boryan et al., 2011) and the Annual Crop Inventory (ACI) in Canada 
(Fisette et al., 2013). These programs are built upon enormous ground 
surveys and the associated 30-m resolution maps typically have overall 
accuracies higher than 85% for major crop categories (Boryan et al., 
2011; Fisette et al., 2013). In Europe, the Land Use/Cover Area frame 
Survey (LUCAS) has been conducted for several years since 2006 to 
collect in-situ points for high-resolution land cover mapping over the 
European Union (d’Andrimont et al., 2021; d’Andrimont et al., 2020). 
The LUCAS tri-annual surveyed samples are freely accessible and have 
enabled large-area crop mapping at 30-m resolution (e.g., Pflugmacher 
et al., 2019) as well as 10-m resolution (e.g., d’Andrimont et al., 2021; 
Weigand et al., 2020). These maps reported average accuracies over 
75% by utilizing LUCAS as ground reference data. 

Broad-scale crop mapping projects only exist in limited countries or 
regions, though are rapidly increasing. Since 2015, the Sentinel-2 for 
Agriculture (Sen2-Agri) program launched by the European Space 
Agency (ESA) has produced 10-m resolution crop maps for 12 test sites 
distributed in Europe, Asia and North America (Defourny et al., 2019; 
Inglada et al., 2015). The ESA WorldCereal is generating global cropland 
products as well as crop type maps (https://esa-worldcereal.org/en). In 
some Southeast and Northeast Asian countries, single-crop maps were 
produced, such as the NESEA-Rice10 (Han et al., 2021a), the Rape
seedMap10 (Han et al., 2021b), and the rice-cropping and cultural type 
dataset (Manjunath et al., 2015). In China, the CropWatch system has 
been developed since 1998 to monitor crop growth with spatial reso
lutions ranging from 30 m to 1 km (Wu et al., 2013). CropWatch focuses 
on crop growth condition, yield and production modeling by using in
dicators derived from satellite imagery. National-scale crop distribution 
maps have been produced over China, but the coarse spatial resolution 
(e.g., 250 m in Clauss et al. (2016) and 0.5◦ grid in Frolking et al. (2002)) 
hindered further analyses for smallholder farms (Wu et al., 2018). 
Although 10-m regional crop maps have been generated in recent years 
(Jiang et al., 2020; Xiao et al., 2021; You et al., 2021; Zhang et al., 
2018), national-scale maps at 10-m resolution are still publicly un
available in China. Considering that China is the second largest maize 
producer and the largest maize and soybean consumer globally (FAO
Stat, 2021), it can have a significant impact on global agricultural 
markets such as in 2020 when international market prices increased 
substantially in large part due to increased imports by China. As such, 
having reliable and transparent information on China’s maize and soy
bean production is critical. 

Statistical area estimation and satellite-based mapping are often two 
separate procedures. Crop maps, even with high accuracies, are not 
suitable for direct area estimation by “pixel counting” due to bias arising 
from misclassifications and mixed pixels (Gallego, 2004). In contrast, 
using a probability sample of reference data enables us to produce un
biased area estimates with associated uncertainty measures. Recent 
research has demonstrated the unique advantages of combining sample- 
based area estimation with satellite-based mapping to produce inter
nally consistent area estimates and crop maps simultaneously at 
regional, national and continental scales, with demonstrated applica
tions for soybean in the US (Song et al., 2017), Argentina (King et al., 
2017), and South America (Song et al., 2021a), wheat in Pakistan (Khan 
et al., 2021), and cropland in Brazil (Zalles et al., 2019) and South 
America (Zalles et al., 2021). 

The objective of this study was to estimate the area and map the 
distribution of maize and soybean over China for the 2019 growing 
season. We implemented a stratified random sampling design to collect 
field data over the country for area estimation, model training and map 
validation. We developed an operational workflow to process Sentinel-2 
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Multispectral Instrument (MSI) surface reflectance at 10-m resolution, 
processed all MSI data for the growing season of 2019, and generated a 
10-m maize and soybean map that matched sample-based area estimates 
at the national scale. 

2. Data and methods 

Our method was prototyped for the US (Song et al., 2017), and tested 
in Argentina (King et al., 2017), Pakistan (Khan et al., 2021) and at the 
continental scale for South America (Song et al., 2021a). Here we 

advance the method through its application in China using Sentinel-2 
data. The overall method consists of six major modules (Fig. 1): (1) 
sampling design and field survey; (2) block-level crop mapping with 
high-resolution data; (3) sample-based crop area estimation; (4) wall-to- 
wall satellite data processing; (5) national-scale crop classification; and 
(6) crop map evaluation. Sample-based area estimation and national- 
scale satellite-based mapping interact at various stages throughout the 
workflow: a) national mapping relies on field data for model training; b) 
applying a regression estimator to improve precision of the sample- 
based area estimates relies on an intermediate output of national 

Fig. 1. An overview of the workflow for crop area estimation and mapping.  
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mapping as the auxiliary variable; c) final sample-based area estimates 
are used as a constraint for national mapping; and d) field data from the 
probability sample are used as reference for map validation. We describe 
these technical details in sections 2.1 through 2.6 below, corresponding 
to steps 1 through 6, respectively (Fig. 1). 

2.1. Sampling design and field survey 

The goal of the field survey was to collect statistical data for crop 
area estimation as well as training for classification models. To select 
field sites to visit, we implemented a stratified, two-stage cluster sample 
over China. The sampling approach was modified from the original 
method proposed by Song et al. (2017). The land extent of China was 
divided into 10 km × 10 km equal-area blocks. Our primary target crop 
was maize, and thus, we developed a Landsat-based maize indicator map 
for 2018 for the stratification used in the probability sampling design to 
collect the field data. The maize indicator map was generated using a 
decision tree classifier trained with expert-selected training data and 
growing-season Landsat imagery (Potapov et al., 2020). We calculated 
per-block maize area fraction using the indicator map, ranked all blocks 
from high to low maize fraction, and selected a total of 16,931 blocks 
that included 95% of all maize pixels in the indicator map. These blocks 
defined the statistical population (i.e., study area) represented by the 
sample-based area estimates. Based on the sorted blocks with maize area 
fraction from the highest to the lowest, we grouped the blocks into high 
(2264 blocks), medium (4464 blocks) and low (10,203 blocks) strata, 
with the high stratum covering a cumulative area of 50% of all mapped 
maize pixels, the medium stratum covering an additional 30% of maize 
pixels and the low stratum covering the remaining 15% of maize pixels 
(Fig. 2). We randomly selected 15 blocks in each stratum as the primary 
sampling units (PSUs). For each PSU, we randomly selected 10 10 m ×
10 m pixels as the secondary sampling units (SSUs) (Fig. 2b). The 10-m 
SSUs were constructed to match the pixel size of Sentinel-2. Although 
the stratification was primarily designed for maize, due to the large 
spatial overlap between maize and soybean, we also used the sample for 
soybean area estimation and mapping. We manually selected five extra 
blocks to collect ground data, targeting the soybean growing regions 
outside of the maize population. In total, 45 PSUs and 450 SSUs were 
selected for field survey (Table 1). These 5 blocks were only used for 
model training, not for area estimation or map accuracy assessment. 

The collected field data consisted of two subsets: 1) a probability 
sample to obtain the field data for area estimation and map validation 
and 2) data from a non-probability sample used for model training. The 
primary goal of the field survey was to collect crop information over 450 
SSUs for area estimation (Section 2.3) and map validation (Section 2.6). 
We visited every SSU on site, recorded the crop type and took GPS- 
tagged photos (see Table S1 for detailed information). Separate from 
the probability sample of SSUs, we also implemented a “windshield 
survey” in which we recorded a large number of opportunistic field 
observations along the roads while we traveled to the SSU sites (Fig. 2b). 
These windshield survey data were used solely as training data for block- 
level maize and soybean classification (Section 2.2). We collected 
17,858 training points in total from July 21st to August 8th in 2019 (see 
Fig. S1). 

2.2. Block-level mapping with high-resolution satellite data and 
windshield survey 

The goal of block-level mapping was to generate representative 
training data sufficient for national-scale mapping. For every PSU block, 
we downloaded all PlanetScope images as well as all Sentinel-2A/B 
images acquired between May 1st and September 30th, 2019 (Fig. 3). 
We used all available PlanetScope data within the growing window 
without cloud masking or compositing. We resampled Sentinel-2 images 
to 3 m using nearest neighbor to match the spatial resolution of Plan
etScope data. For each PSU, we stacked PlanetScope, Sentinel-2A/B 

images, employed the “windshield survey” data as training, and 
trained two decision tree models for maize and soybean classification. 
All the bands and normalized ratios of any two bands, for both Planet
Scope and Sentinel-2A/B images, were used in classification. We applied 
the trained models to the image stack and generated a binary maize/ 
non-maize map and a binary soybean/non-soybean map at 3-m resolu
tion. Model training and mapping was conducted block by block. These 
mapped PSU blocks were used for the national-scale wall-to-wall map
ping as discussed in Section 2.5 below. 

2.3. Sample-based crop area estimation 

The goal of sample-based crop area estimation was to derive unbi
ased area and uncertainty estimates at the national scale for both maize 
and soybean. We employed regression estimators, which have been 
demonstrated to be effective in reducing the variance (Bellow, 1994; 
Carfagna and Gallego, 2006; Gallego, 2004), to estimate the area of 
maize and soybean in China. We derived maize and soybean fractions for 
each PSU based on the crop information collected over SSUs. Following 
the method described in King et al. (2017), we used the SSU-based 
maize/soybean fractions as the dependent variable (yi), and used a 
satellite-based crop probability layer of the same season as the auxiliary 
variable (xi) for the regression estimator. The method used to derive the 
crop probability layer using Sentinel-2 data is described in detail in 
Sections 2.4 and 2.5 below. Here, for each stratum i, a regression esti
mator is constructed as the following: 

yri = yi + bi*(Xi − xi) (1)  

where the yri denotes the estimated crop fraction for stratum i; yi is the 
sample mean of crop fraction derived from the reference labels applied 
to the SSUs in stratum i; xi is the sample mean of crop fraction derived 
from satellite-based maps to the SSUs in stratum i; Xi is the population 
mean for stratum i derived from the satellite-based crop probability 
layer; bi is the ordinary least squares estimate of the slope for stratum i. 
The national crop area (ytotal) is produced by the combination of per- 
stratum regression estimate: 

ytotal =
1
N
∑

i
Niyri (2)  

where N is the number of total blocks and Ni is the number of blocks in 
stratum i. The estimated variance (V̂

(
ytotal

)
) is calculated as follows: 

V̂ (ytotal) =
1

N2

∑

i

N2
i

(

1 −
ni

Ni

)

ni

[
s2

yi − 2bisyxi + b2
i s2

xi

] (3)  

where ni is the number of blocks sampled in stratum i (15 per stratum in 
this study); s2

yi and s2
xi are the sample variances of y and x in stratum i; syxi 

is the sample covariance between x and y in stratum i. 

2.4. Wall-to-wall Sentinel-2 data processing 

The goal of this step was to pre-process Sentinel-2 data into Analysis 
Ready Data (ARD) format that can be directly used in national crop 
classification. We downloaded Sentinel 2A and 2B Level-2A Bottom of 
the Atmosphere reflectance (S2 L2A) images from Google Cloud (https 
://cloud.google.com/storage/docs/public-datasets/sentinel-2, accessed 
on May 09, 2022), in the format of Sentinel-2 Standard Archive Format 
for Europe (SAFE). We used an 80% cloud cover threshold to filter im
ages acquired from April 1st to October 31st, 2019, resulting in 66,750 
SAFE folders (Fig. 4). 

2.4.1. Quality assurance 
Based on the S2 scene classification (SCL) map available with L2A, 
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we generated a SCL-derived quality assurance (QA) mask by merging 
cloud shadows, cloud with low, medium, and high probability, thin 
cirrus, and snow classes. To improve cloud identification over bright 
targets such as bare ground, reflective rocks and built-up areas, which 
could be committed or omitted by Sen2Cor (Coluzzi et al., 2018), we 
applied additional spectral tests (Bolton et al., 2020). Given that white 
clouds appear to have “flat” reflectance in visible bands, the blue, green, 
red bands were used to calculate the mean surface reflectance (SR) value 
(Eq. 4) to conduct the whiteness test (Eq. 5) (Gomez-Chova et al., 2007; 

Zhu and Woodcock, 2012). To separate bright objects from clouds, the 
band ratio of near-infrared (NIR) and shortwave-infrared (SWIR) was 
used to compensate the SCL-derived cloud mask (Eq. 6) (Irish, 2000). By 
visually interpreting the quality of cloud masks, the empirical threshold 
of 0.3 for whiteness and 1.4 for the band ratio of NIR and SWIR (1610 
nm) were used. A pixel was identified as cloud using the whiteness test 
<0.3 and the NIR-SWIR (1610 nm) ratio > 1.4. These spectral tests 
resulted in a supplementary cloud mask, which was combined with the 
SCL-derived mask. We then applied additional morphological 

Fig. 2. Probability sampling design 
and field data collection for crop 
mapping in China. (a) maize strata and 
first-stage sample blocks (primary 
sampling units, PSUs). (b) a represen
tative sample block in Hebei with 
center coordinates (126.676◦ E, 
43.965◦ N). Second-stage sample 
pixels (secondary sampling units, 
SSUs) within the block are shown as 
red crosses, and “windshield survey” 
points along the roads are shown as 
white dots, with Google Earth image 
as background. (c-d) zoom-in panels 
for SSUs and field points at field 
scales, the pixel boundary is shown as 
the yellow box. (e-g) Selected field 
photos showing the large diversity of 
agricultural practices in China: (e) 
large-field maize, (f) smallholder 
maize mixed with other crops in 
irregular fields, (g) inter-cropping 
field with maize, soybean, peanut 
and trees. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the 
web version of this article.)   
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operations—closing followed by opening using a 3 × 3 kernel—to 
remove small scattered pixels and to fill the holes in large clouds. 45.6% 
observations were flagged cloudy and removed from subsequent 
analysis. 

MeanSR =
Band1 + Band2 + Band3

3
(4)  

Whiteness Test =
∑3

i=1

⃒
⃒
⃒
⃒
Bandi − MeanSR

MeanSR

⃒
⃒
⃒
⃒ (5)  

Ratio nir
swir

=
NIR

SWIR
(6)  

2.4.2. Monthly image composition 
We resampled all the 20-m bands to 10-m resolution using nearest 

neighbor resampling, including Red-Edge-1 (RE1), Red-Edge-2 (RE2), 
Red-Edge-3 (RE3), narrow near-infrared (NNIR), SWIR1 and SWIR2. We 
then applied the QA mask and created monthly image composites to 
reduce the data volume. For all clear-view pixels in a given month, the 
median NIR and the corresponding day of year (DOY) information was 
retrieved; surface reflectance values of all bands acquired on the DOY 
were selected to create the composited image. The median band value 
approach has shown advantages for timeseries imagery compositing 

Table 1 
Maize strata and sample size for area estimation. National maize coverage is 
derived from 2018 Landsat-based maize indicator map and the block size is 10 
km × 10 km.  

Stratum National 
maize 
coverage 

Maize 
fraction 
per block 

Number of 
blocks in 
stratum 

Number 
of PSU 
in stratum 

Number 
of SSU 
in blocks 

High 50% 
9.7% ~ 
52.8% 

2264 15 150 

Medium 30% 2.7% ~ 
9.7% 

4464 15 150 

Low 15% < 2.7% 10,203 15 150 
Total 95% – 16,931 45 450  

Fig. 3. PlanetScope (PS) and Sentinel-2 (S2) images acquired between May 1st and September 30th, 2019 over a representative 10 km × 10 km sample block. All 
panels are shown in the same band combination of NIR/Red/Green. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 4. Monthly Sentinel-2 data in Standard Archive Format for Europe (SAFE) format and cloud cover statistics over China from April to October 2019. For cloud 
cover, the median and mean values are shown as black lines and red triangles in boxplots, respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 5. Phenological variations over agricultural regions are visible from the 10-m monthly Sentinel-2 composites. All panels are shown in NIR/SWIR1/SWIR2 band 
combination within 5 km × 5 km blocks. From top to bottom, the images are located in Xinjiang (85.598◦ E, 44.667◦ N), Gansu (102.481◦ E, 38.553◦ N), Inner 
Mongolia (107.564◦ E, 41.246◦ N), Jilin (122.261◦ E, 45.660◦ N), Shandong (117.250◦ E, 37.561◦ N) and Henan (114.894◦ E, 33.095◦ N), respectively. Single- 
cropping patterns in Xinjiang, Gansu, Inner Mongolia and Jilin, and double-cropping patterns in Shandong and Henan are both shown by the monthly composites. 
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compared to the maximum NDVI approach (Potapov et al., 2011). This 
median NIR-based composition strategy was chosen as a result of visual 
assessments of multiple composition methods, including the widely used 
NDVI-based compositing. We also recorded the per-pixel DOY as meta
data. Although S2 data have a 5-day revisit frequency, data gaps still 
exist due to atmospheric conditions. To fill the data gaps, we applied a 
per-pixel temporal interpolation method following Griffiths et al. 
(2019). For a given month, if the pixel value was missing due to cloud, 
reflectance values of the preceding and subsequent months were used to 
calculate the interpolated reflectance value. For the rare cases when 
clouds are present persistently for two months, we did not conduct 
interpolation. Our monthly compositing generated spatially coherent 
data with clearly revealed phenological variations (Fig. 5). 

2.4.3. Reprojection and tiling 
We designed a geographic degree tiling system to efficiently manage 

the large spatial datasets. The study area was divided into seamless 1◦ ×

1◦ tiles in geographic latitude/longitude projection with WGS84 datum. 
Each tile was named by the latitude and longitude coordinates of the 
lower-left corner. To approximate the 10-m resolution of Sentinel-2 
pixels, we chose 0.0001◦ × 0.0001◦ (approximately 11 m at the Equa
tor) as the spatial resolution of the degree tile. After removing small 
islands and sea areas, we conducted reprojection for the 1223 Sentinel-2 
Universal Transverse Mercator (UTM) tiles, resulting in 1119 degree 
tiles (Fig. 6). 

2.4.4. Spectral indices and other inputs for classification 
To prepare data for crop mapping, we derived spectral indices in 

addition to surface reflectance (Table 2). We also downloaded NASA
DEM topographic data from the EarthData Search as inputs for classi
fication (https://search.earthdata.nasa.gov/, accessed on July 05, 
2021). Organized in 1◦ × 1◦ tiles at 1 arc sec resolution, NASADEM is a 
collection of Digital Elevation Model (DEM) and associated products 
derived from the Shuttle Radar Topography Mission (SRTM), the Ice, 

Fig. 6. The geographic tiling system for Sentinel 2 data processing over China. (a-b) original UTM tiles of Sentinel-2 data. (c-d) 1◦ × 1◦ degree geographic tiles in 
WGS84 datum. Compared to the original UTM tiles, our degree tiles do not have overlap between neighboring orbital tracks (b and d). 
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Cloud, and land Elevation Satellite (ICESat) and the Advanced Space
borne Thermal Emission and Reflection Radiometer (ASTER) (Buckley 
et al., 2020). We used the elevation, slope and aspect layers and 
resampled them to 0.0001◦ × 0.0001◦ to match our S2 degree tiles. In 
the end, input data for crop classification included 70 monthly spectral 
reflectance (i.e., 10 bands over 7 months), 70 monthly spectral indices 
and 3 topographic metrics. 

2.5. National-scale crop classification 

The goal of national crop classification was to produce a crop map for 
which the area of maize and soybean derived by pixel counting matched 
the sample-based area estimates at the national scale. 

2.5.1. Training data generation 
We generated training labels from the 3-m maize and soybean block 

maps (see section 2.2 above). We spatially aggregated the maps from 3- 
m to 10-m resolution and derived percent maize and soybean cover per 
10-m pixel. We then applied a 50% cover threshold to derive binary 
maize/non-maize and soybean/non-soybean classes at 10-m resolution. 
We randomly selected 1% of the pixels from each block as the national 
training data. 

2.5.2. Binary classification with Random Forests 
Random Forests (RF) is an ensemble machine learning algorithm that 

works by constructing multiple trees through random training and 
variable selection (Breiman, 2001). Due to its high accuracy, effective 
computation, robustness to noise, and ability to deal with high- 
dimensional, non-linear data, the RF classifier has been widely used in 
remote sensing (Belgiu and Drăguţ, 2016; Pal, 2007). Binarization is an 
efficient technique to approach multi-class problems by decomposing a 
multi-class problem into binary classification cases with binary classi
fiers trained and predicted separately, and combining binary results for 
final classification (Galar et al., 2011; Lorena et al., 2009). In this study, 
we used RF classifiers for binary classifications for maize (RF-Maize) and 
soybean (RF-Soybean) independently with the one-vs-all decomposition 
strategy (Adnan and Islam, 2015), and subsequently aggregated the 
results to a multi-class map. 

Major parameters of a RF classifier include: (1) n_estimators (the 
number of trees in a forest); (2) max_depth (the maximum depth of a 
tree); (3) min_samples_split (the minimum number of samples required 
to split an internal node); (4) min_samples_leaf (the minimum number of 

samples required to be at a leaf node); (5) max_features (the number of 
features to consider when looking for the best split) (Pedregosa et al., 
2011). We fine-tuned the model through random search followed by a 
grid search using 70% of the national training data as the training 
dataset (Probst et al., 2019). 30% of the data was used as the test dataset, 
and the out-of-bag error was used as the scoring function. After 
obtaining optimal hyper-parameters, we retrained the model with all 
training data to make predictions. All the training, test, fine-tuning and 
prediction were implemented for RF-Maize and RF-Soybean indepen
dently, using the scikit-learn Python package (Pedregosa et al., 2011). 

The prediction of a RF classifier is determined by the per-pixel class 
probability, which is assigned as the mean value across all trees. We also 
calculated the standard deviation of the class probability across all trees 
to represent the per-pixel prediction uncertainty using the following 
equation: 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

1
(xi − μ)2

√
√
√
√ (7)  

where σ is the standard deviation of class probability; N is the number of 
trees in a forest; xi is the predicted probability from the ith tree; μ is the 
mean probability across all trees. 

2.5.3. Probability threshold optimization to match sample-based area 
estimates 

Since RF-Maize and RF-Soybean produced per-pixel class probabili
ties independently, we generated a combined probability layer by 
assigning each pixel to the class with the highest probability. For pixels 
with equal probabilities for maize and soybean, the one with the smaller 
standard deviation was chosen. We also created a crop mask (maize or 
soybean) and recorded the crop information and the probability un
certainty information associated with the combined probability layer. 
For all maize pixels, following the method in Song et al. (2017) and 
Tyukavina et al. (2022), we found the optimal probability threshold 
across all strata such that the map-based maize area through pixel 
counting matched the sample-based area estimate (see Section 2.3). 
Likewise, the optimal probability threshold for soybean was also found. 
Then, these two thresholds were applied to the combined probability 
and the associated crop mask to generate the final classification map 
with both maize and soybean classes. 

Table 2 
Spectral indices used for crop classification.  

Spectral Indices Formula Sentinel-2 bands Reference 

Normalized Difference 
Vegetation Index 
(NDVI) 

(NIR − Red)/ 
(NIR + Red) (B8 − B4)/(B8 + B4) Tucker (1979) 

Normalized Difference Water Index 
(NDWI) 

(NIR − SWIR1)/ 
(NIR + SWIR1) (B8 − B11)/(B8 + B11) Gao (1996) 

Normalized Difference Built-up Index 
(NDBI) 

(SWIR1 − NIR)/ 
(SWIR1 + NIR) 

(B11 − B8)/(B11 + B8) Zha et al. (2003) 

Normalized Difference Snow Index 
(NDSI) 

(Green − SWIR1)/ 
(Green+SWIR1) 

(B3 − B11)/(B3 + B11) Salomonson and Appel (2004) 

Normalized Difference Tillage Index 
(NDTI) 

(SWIR1 − SWIR2)/ 
(SWIR1 + SWIR2) 

(B11 − B12)/(B11 + B12) Deventer et al. (1997) 

Normalized Burn 
Ratio (NBR) 

(NIR − SWIR2)/ 
(NIR + SWIR2) (B8 − B12)/(B8 + B12) Key and Benson (2006) 

Enhanced Vegetation Index (EVI) 
2.5*(NIR − Red)/ 
(NIR + 6*Red 
− 7.5*Blue+1) 

2.5*(B8 − B4)/ 
(B8 + 6*B4 − 7.5*B2 + 1) Huete et al. (2002) 

Soil-Adjusted Vegetation Index 
(SAVI) 

(NIR − Red)/ 
(NIR + Red+0.5)*(1 + 0.5) 

(B8 − B4)/ 
(B8 + B4 + 0.5)*(1 + 0.5)) 

Huete (1988) 

Red-Edge Position 
(REP) 

705 + 35*((((RE3 + Red)/2) 
− RE1)/(RE2 − RE1)) 

705 + 35*((((B7 + B4)/2)  
− B5)/(B6 − B5)) Frampton et al. (2013) 

Inverted Red-Edge Chlorophyll Index 
(IRECI) (RE3 − Red) / (RE1/RE2) (B7 − B4)/(B5/B6) Frampton et al. (2013)  
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2.6. Crop map evaluation 

2.6.1. Direct map validation 
We used the 450 pixels (i.e., SSUs) from the probability sample to 

assess the accuracy of the national map. Accuracy metrics including 
overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy 
(UA) were estimated. Of the 450 SSUs, 406 were pure pixels and 44 
pixels were mixed pixels, according to the per-pixel crop cover fractions 
derived from in-situ assessment (an example is shown in Fig. S2). We 
estimated two sets of accuracy metrics, one using the 406 pure pixels 
and one using all 450 pixels to investigate the impact of mixed pixels on 

classification accuracy. For the mixed pixels, we labeled a pixel as maize 
if the maize proportion within the pixel exceeded 50%. 

2.6.2. 10-fold cross-validation 
Although only 1% of the area within mapped PSU blocks was used 

for training, the training data could still overlap, at a very low likeli
hood, with the validation data (10 pixels per PSU), as the validation data 
were also located within the first-stage sample PSUs. To supplement the 
direct map validation, we conducted a 10-fold cross-validation with the 
objective of keeping the validation data completely separate from the 
training data. We randomly divided the 50 blocks into 10 equal-size 

Fig. 7. National crop map at 10-m resolution over China in 2019. (a) national crop map for maize and soybean. (b-c) crop classifications in two major agricultural 
regions of Northeast China Plain and North China Plain displayed at the same scale (600 km × 600 km). (d-g) crop classification displayed at a finer scale (10 km ×
10 km) in different regions. (h-k) Sentinel-2 monthly composites in August (R: NNIR, G: SWIR1, B: Red) corresponding to panels (d-g), respectively. The center 
coordinates of (b-g) are (124.540◦ E, 47.117◦ N), (114.834◦ E, 35.571◦ N), (125.541◦ E, 48.741◦ N), (125.035◦ E, 45.342◦ N), (113.850◦ E, 33.758◦ N), (116.674◦ E, 
37.451◦ N), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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groups. For each of the 10 iterations, we used 9 groups of data (45 
blocks) to train a RF classifier, and used the SSU pixel locations of the 
remaining group (50 pixels in 5 blocks) to extract the RF predicted 
classes as the validation data. After the 10 iterations, we created a 
dataset consisting of 500 pixels with paired RF predictions and field 
labels. 450 of the 500 pixels were selected from the probability sampling 
design, and thus, they were used to derive accuracy estimates using the 
stratified estimators applied to the direct map validation as described 
above. 

3. Results 

3.1. National crop area estimates 

Using field data from the probability sample and a regression esti
mator, we estimated the national maize area in China in 2019 to be 
330,609 km2 with a standard error of 34,109 km2, and the national 
soybean area to be 78,107 km2, with a standard error of 12,969 km2. 

Table 3 
Accuracy metrics for the national crop map using field sample data as reference. A total of 450 pixels from the two-stage cluster sample were visited in the field, 
consisting of 406 pure pixels and 44 mixed pixels. SE: standard error.  

Field sample Class Users’ accuracy % (SE) Producers’ accuracy % (SE) Overall accuracy % (SE) Validation method 

Pure pixels  
(n = 406) 

Maize 97.2 (1.5) 86.7 (3.2) 95.4 (0.9) Direct validation 
Soybean 84.4 (9.3) 64.1 (13.5)  
Others 95.4 (1.1) 98.9 (0.5)  

All pixels 
(n = 450) 

Maize 93.9 (2.5) 79.2 (3.6) 91.8 (1.2) 
Soybean 63.6 (12.1) 61.9 (11.8)  
Others 92.6 (1.3) 96.9 (1.0)  

Pure pixels 
Maize 97.7 (1.3) 85.5 (3.6) 94.6 (1.1) 

10-fold cross-validation 

Soybean 71.6 (12.2) 44.6 (23.4)  
Others 94.5 (1.3) 98.9 (0.5)  

All pixels 
Maize 97.9 (1.1) 77.4 (3.8) 91.2 (1.3) 
Soybean 47.0 (11.6) 40.4 (10.5)  
Others 91.4 (1.4) 97.5 (0.8)   

Fig. 8. Comparison between mapped crop area and planted crop area reported by official statistics at provincial and prefectural levels. (a) maize at provincial level; 
(b) soybean at provincial level; (c) maize at prefectural level; (d) soybean at prefectural level. 
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3.2. National crop map and accuracy 

Spatial patterns of maize and soybean are shown on the 10-m crop 
map (Fig. 7). Maize has a much wider distribution than soybean. The 
dominant maize cultivation locations include the Northeast China Plain 
(Fig. 7b), including Heilongjiang, Jilin, Liaoning and several munici
palities in eastern Inner Mongolia, and the North China Plain (Fig. 7c), 
including Hebei, Shandong and Henan. Soybeans were mainly clustered 
in Heilongjiang and Henan. The 10-m resolution of the map allowed 
visualization of large homogeneous fields (Fig. 7d), as well as small 
fragmented fields (Fig. 7e, f, and g). 

Our crop map has high classification accuracies (Table 3). For the 
direct validation based on the probability sample field data, the map 
achieved OA of 91.8%, and UA of 93.9%, PA of 79.2% for maize, all with 
small standard errors. UA (63.6%) and PA (61.9%) for soybean were 
both lower than those of maize and with larger standard errors. The 
largest change resulting from including the mixed pixels was a decrease 
in UA of soybean from 84% to 64%, indicating that much of the com
mission error of soybean was associated with mixed pixels. For maize, 
the 10-fold cross-validation generated comparable accuracy results as 
the direct map validation. For soybean, the 10-fold cross-validation 
accuracies were lower than their counterparts from direct validation. 

For example, for the “all pixels” case, UA decreased from 64% for the 
direct validation to 47% for the cross-validation, and PA decreased from 
62% to 40%. The larger difference for soybean can be attributed to two 
factors. First, separating training and accuracy assessment sample pixels 
by sample blocks has been demonstrated to diminish the impact of 
having training and validation data in close proximity (Friedl et al., 
2010; Zhen et al., 2013). Second, soybeans were mainly clustered in 
Heilongjiang and Henan (Fig. 7). Due to the highly clustered pattern and 
that our stratification was not specifically tailored for soybean, training 
data used in creating the random forests models in the cross-validation 
could become unrepresentative when the blocks in Heilongjiang and 
Henan were excluded. Thus, accuracies from cross-validation were 
lower than direct validation, where a more representative training set 
from all the blocks were used. 

3.3. Comparison with government reports 

We compared our area estimates with official statistics at national, 
provincial and prefectural levels. For the national and provincial levels, 
we collected the 2019 official agricultural statistics from the National 
Bureau of Statistics website. This dataset was compiled by provincial 
bureau of statistics, with crop information including planted and 

Fig. 9. Difference between mapped crop area and planted crop area reported by official statistics at provincial and prefectural level. (a) maize at provincial level; (b) 
soybean at provincial level; (c) maize at prefectural level; (d) soybean at prefectural level. 
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harvested area, yield and production for major food crops. We also 
downloaded the crop statistics at the prefectural level from yearbooks in 
2019 from the China Economic and Social Data Platform on National 
Knowledge Infrastructure (CNKI). The reported national maize har
vested area was 412,800 km2 and soybean harvested area was 84,230 
km2 in 2019. Compared to the official statistics, our estimate of maize 
area (330,609 km2 ± 34,109 km2) was about 20% lower and our esti
mate of soybean area (78,107 km2 ± 12,969 km2) was about 7% lower. 
Correspondence between our estimates and official statistics is improved 
if we use the upper bounds of our estimates. That is, if we incorporate 
the uncertainty of the area estimates via either a 68% (±SE) or 95% 
(±2SE) confidence interval, the upper bound of the confidence interval 
is closer to the official statistics. 

We calculated the maize and soybean areas at provincial and pre
fectural scales using our map, and compared them with official statistics. 
Note that the reported area at the provincial and prefectural scales is 
planted area rather than the harvested area at the national scale. For 
maize, 30 provincial and 140 prefectural records were available, and for 
soybean 30 provincial and 130 prefectural records were available. 
Quantitative analyses were conducted by calculating the r2, the root- 
mean-square-difference (RMSD) and the mean difference (MD). At the 
provincial level, the area comparison showed close relationships be
tween mapped and reported areas for both maize (r2 = 0.90, RMSD =
6024 km2, MD = 2714 km2) and soybean (r2 = 0.93, RMSD = 2461 km2, 
MD = 564 km2) (Fig. 8a, b). However, larger differences were observed 
in southwestern provinces, particularly Sichuan and Yunnan, with our 
map-based area lower than the reported area (Fig. 8a, Fig. 9a). This 
could be caused by the predominant smallholder cropping systems in 
mountainous areas with considerable field-level heterogeneity (Song 
et al., 2016). Maize in southwest China is often one of multiple mixed 
crops grown on small tracts of land for self-sufficiency. Remote sensing 
data of 10-m resolution are capable of mapping accurately crop versus 
no crop in such mixed cropping systems but have limited success when 
mapping specific crop types within the mixture. Besides, for some areas 
in southwestern China (Sichuan and Yunnan), cloud-free Sentinel-2 
observations in the peak growing season are reduced due to continuous 

cloudy conditions, which can affect mapping accuracy (see Fig. S3). 
Maize area in major growing provinces in the Northeast and North China 
Plains generally agreed well with official statistics. Our mapped soybean 
areas also showed close agreement with official statistics for most 
provinces including the southern provinces, although a notable differ
ence was observed in Heilongjiang (Fig. 8b, Fig. 9b). At the prefectural 
level, for both maize (r2 = 0.92, RMSD = 765 km2, MD = 181 km2) and 
soybean (r2 = 0.94, RMSD = 395 km2, MD = 38 km2), our mapped areas 
and official statistics showed higher agreement than the provincial-level 
results (Fig. 8c, d), although our mapped areas were generally higher in 
the Northeast China Plain and lower in the North China Plain (Fig. 9c, 
d). 

4. Discussion 

4.1. Feature importance in random forests models 

The trained RF-Maize model and RF-Soybean model had nearly 
identical structure (Table 4). The fine-tuned hyper-parameters all have 
the same or similar values. 

We evaluated the feature importance based on the mean decrease in 
impurity in RF models. The ten most important features accounted for 
56.4% and 49.8% of cumulative importance, for RF-Maize and RF- 
Soybean, respectively (Fig. 10). For maize classification, the most 
heavily used feature was the Red-Edge-Position (REP) in August, fol
lowed by Red-Edge-1 (RE1, 705 nm) in August and SWIR2 (2190 nm) in 
June. For soybean classification, the most important features were Red- 
Edge-2 (RE2, 740 nm) in August and September, and NIR (842 nm) in 
August. Overall, the red-edge (RE) bands during peak growing season (i. 
e., August) were more critical (Fig. 11), and the NIR and SWRI2 bands 
also showed great value for classification. These findings are consistent 
with a recent study that revealed the comparative utility of various 
spectral bands from Landsat and Sentinel-2 for maize and soybean 
mapping in the US (Song et al., 2021b). 

As an intermediate output of RF, the probability layer represents the 
predicted likelihood of a pixel being a crop type. The mapped crop area 
is a function of the probability threshold applied (Fig. 12). The default 
threshold is 0.5. Adjusting the threshold provided us with flexibility to 
produce maps to match a desirable area target, which could be the 
sample-based area estimate, or the lower or upper confidence bounds. 
Here, by finding the empirical thresholds that minimized the difference 
between map-based area and sample-based area (0.50 for maize and 
0.37 for soybean), we produced the national map that could be used to 
derive unbiased area estimates at the national scale through pixel 
counting. 

Fig. 10. Ten most important features for RF-Maize (a) and RF-Soybean (b) models. Features are named by corresponding months followed by Sentinel-2 bands or 
spectral indices. 

Table 4 
Fine-tuned hyper-parameters for RF-Maize and RF-Soybean models.  

Parameter RF-Maize RF-Soybean 

Max_depth 46 46 
Max_features 91 89 
Min_samples_leaf 8 8 
Min_samples_split 18 19 
N_estimators 100 100  
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4.2. Stratified cluster sampling for national crop area estimation and 
mapping 

We adopted a stratified, two-stage, cluster sampling design to collect 
ground reference data for maize and soybean area estimation and 
mapping in China. Cluster sampling is a cost-effective method for 
regional (Khan et al., 2018), national (King et al., 2017; Song et al., 
2017) and continental (Song et al., 2021a) scale applications when 
reference data are collected by ground visit (i.e., field data). One of the 
critical parameters of the sampling design is the size of the primary 
sampling unit, which should be adaptive to specific geographical 

context in practice. For industrial agricultural regions with large field 
sizes (e.g., the US and South America), a PSU of 20 km × 20 km has 
proven to be highly effective (King et al., 2017; Song et al., 2021a; Song 
et al., 2017). In China, where smallholder agriculture is the dominant 
form and logistical constraints are greater, we have demonstrated in this 
study that the PSU size of 10 km × 10 km is effective. However, choosing 
the PSU size for any given application involves consideration of trade- 
offs between cost and precision (Kish, 1965, sec. 8.3). This PSU size is 
consistent with the study of Khan et al. (2018) which focused on 
smallholder wheat mapping in Punjab, Pakistan. Our sampling proced
ure shows great potential to be applicable in other regions dominated by 

Fig. 12. Map-based maize and soybean areas as a function of thresholds of random forest-derived class probability. The empirical thresholds for which map-based 
areas match sample-based area estimates are symbolized by triangles. 

Fig. 11. Temporal profiles of important features for maize, soybean and other classes. The plots were made using training pixels of the RF models. Thick lines 
represent the mean value and shaded areas represent one standard deviation. 
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smallholder agriculture, although the PSU size might need to be adapted 
accordingly. 

Stratified random sampling can generate smaller standard errors for 
land cover/land use area estimates than simple random sampling and 
systematic random sampling of the same sample size (Broich et al., 
2009). Stratification allows us to target crops that are unevenly 
distributed across a country more efficiently. In this study, we generated 
a Landsat-based maize indicator map for stratification, as maize was our 
primary interest. Using strata not specifically tailored to soybean 
resulted in the standard errors of soybean area and accuracy estimates 
being larger than what might have been achieved with strata tailored to 
soybean (Fig. 13). These results reveal the challenge of how to choose 
strata and the sample size allocation to strata to achieve precise esti
mates for multiple crop types if their spatial distributions do not sub
stantially overlap within the study area. 

4.3. Strength of high-performance computing 

Developing a 10-m resolution crop map for a large country such as 
China involves processing a large volume of satellite data, which re
quires considerable resources for computing and data storage. One of the 
options is cloud computing platforms such as Google Cloud, Amazon 
Web Service and Microsoft Azure. Google Earth Engine (GEE) is a 
particularly popular tool in the remote sensing research community 
(Gorelick et al., 2017). An alternative option is high-performance 
computing (HPC) clusters that are increasingly available in in
stitutions. Our 10-m wall-to-wall mapping was conducted on the HPC 
cluster at Texas Tech University. Combining supercomputing resources 
and Message Passing Interface (MPI) programming, the major steps of 
our mapping approach (see Fig. 1), including satellite data pre- 
processing, random forests training and prediction were implemented 
with high efficiency on the HPC clusters. The production of our 10-m 
national crop map consumed about 684,367 CPU hours in total. The 
66,750 original SAFE folders in 1223 UTM tiles, the reprojected data in 
1119 1◦ × 1◦ tiles, and the mapping results accounted for about 285 
terabytes in storage. The parallel environment of the HPC clusters 
enabled us to carry out national-scale crop mapping within a manage
able time frame. Our established workflow can be potentially imple
mented in an operational setting for repeated mapping, which is critical 
for agricultural monitoring. 

5. Conclusions 

We developed an operational workflow to generate a 10-m resolu
tion maize and soybean map over China. The workflow consists of two 
parallel yet interactive streams of activities – field data from a proba
bility sample and wall-to-wall satellite mapping. Their interactions are: 

(1) the historical satellite-based crop map is used to construct strata for 
the sampling design implemented to collect field (ground) reference 
data; (2) collected ground data are used to train machine learning 
models for mapping; (3) intermediate mapping outputs are used as the 
auxiliary variable in the unbiased sample-based regression estimator; 
(4) sample-based area estimates are used as constraints to final mapping 
so that national estimates based on the map match the area estimates 
from the sample; and (5) field data from the probability sample are used 
to validate the satellite-based crop maps. This interactive workflow can 
generate two sets of internally consistent results: unbiased sample-based 
crop area estimates with associated uncertainty estimates, and accurate 
maps with area matching that of the sample-based estimates. Our 
national-scale maize and soybean area estimates can be produced at the 
end of the growing season, independent of government statistics. Given 
that Sentinel-2 data are being acquired continuously and commercial 
high-resolution imagery is becoming increasingly abundant, our estab
lished workflow could be operationally applied to generate crop maps in 
China and other countries. 
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Fig. 13. Per-stratum maize and soybean cover statistics. Crop cover statistics were derived using the 3-m resolution block maps. The median values are labeled in 
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Cloud Platform (https://cloud.google.com/storage/docs/public- 
datasets/sentinel-2); 3) the PlanetScope data were acquiredfrom 
Planet (https://www.planet.com/). The 10-m maize and soybean map 
can be viewed and downloaded from the Google Earth Engine App 
(https://glad.earthengine.app/view/china-crop-map). 
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