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A B S T R A C T   

Long-term spatially explicit information on crop yield is essential for understanding food security in a changing 
climate. Here we present a study that combines twenty-years of Landsat and MODIS data, climate and weather 
records, municipality-level crop yield statistics, random forests and linear regression models for mapping crop 
yield in a multi-temporal, multi-scale modeling framework. The study was conducted for soybean in Brazil. Using 
a recently developed 30 m resolution, annual (2001–2019) soybean classification map product, we aggregated 
multi-temporal phenological metrics derived from Landsat and MODIS data over soybean pixels to the munic
ipality scale. We combined phenological metrics with topographic features, long-term climate data, in-season 
weather data and soil variables as inputs to machine learning models. We trained a multi-year random forests 
model using yield statistics as reference and subsequently applied linear regression to adjust the biases in the 
direct output of the random forests model. This model combination achieved the best performance with a root- 
mean-square-error (RMSE) of 344 kg/ha (12% relative to long-term mean yield) and an r2 of 0.69, on the basis of 
20% withheld test data. The RMSE of the leave-one-year-out model assessment ranged from 259 kg/ha to 816 
kg/ha. To eliminate the artifacts caused by the coarse-resolution climate and weather data, we developed 
multiple models with different categories of input variables. Employing the per-pixel uncertainty estimates of 
different models, the final soybean yield maps were produced through per-pixel model composition. We applied 
the models trained on 2001–2019 data to 2020 data and produced a soybean yield map for 2020, demonstrating 
the predictive capability of trained machine learning models for operational yield mapping in future years. Our 
research showed that combining satellite, climate and weather data and machine learning could effectively map 
crop yield at high resolution, providing critical information to understand yield growth, anomaly and food 
security.   

1. Introduction 

Reliable and timely information on crop production can inform 
commodity markets, insurance companies, and policy interventions in 
response to natural disasters and human conflict (Benami et al., 2021; Li 
et al., 2022; Vroege et al., 2021). Estimating crop production over a 
spatial unit requires information on crop harvested area and crop yield 
(i.e. production per unit area). Both harvested area and yield can be 
derived from statistical field surveys or from satellite observations 
(Mulla 2013; Weiss et al., 2020) . While many methods exist in mapping 
crop type and estimating crop area using remote sensing (e.g. Defourny 
et al. 2019, Gallego 2004, Gonzáles-Alonso and Cuevas 1993, Hu et al. 

2021, King et al. 2017, Massey et al. 2017, Skakun et al. 2017, Song 
et al. 2017, Wardlow and Egbert 2008), studies are increasingly inves
tigating direct mapping of crop yield using remote sensing data. Crop 
yield maps can facilitate a number of research or practical applications, 
such as climate impact evaluation and yield gap analysis (Lobell, 2013). 

Mapping crop yield requires crop type masks as a prerequisite. When 
crop type masks are available, two different strategies are commonly 
used to produce spatially explicit information on yield: the model-data 
integration approach and the remote sensing-based empirical 
approach. The model-data integration approach seeks to integrate crop 
simulation models with remote-sensing-derived biophysical variables 
for yield forecasting (Delécolle et al., 1992; Moulin et al., 1998). Crop 
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simulation models are developed using comprehensive measurements 
recorded at the plot or field level, such as crop cultivar, sowing date, soil 
property, water and nutrient inputs, weather, and plant physiological 
and morphological features (e.g. leaf area index or LAI) (de Wit et al., 
2019; Holzworth et al., 2014; Jones et al., 2003; Williams et al., 1989; 
Yang et al., 2004). The modeled processes of crop growth can be used to 
predict crop productivity and to evaluate the impacts of agricultural 
management and environmental stressors. Various techniques have 
been proposed to “spatialize” crop process models using time-series of 
satellite-based soil, plant and environmental variables, such as soil 
moisture, normalized difference vegetation index (NDVI), LAI, green 
area index (GAI), and fraction of photosynthetically active radiation 
(fPAR) (Battude et al., 2016; Claverie et al., 2012; de Wit et al., 2012; 
Doraiswamy et al., 2004; Duchemin et al., 2008; Huang et al., 2015; 
Ines et al., 2013; Kang and Özdoğan, 2019; Nearing et al., 2012). Yet, a 
general limitation of applying crop process models over large areas is the 
lack of sufficient and accurate information about model inputs (Duch
emin et al., 2008; Jin et al., 2018). Moreover, the model-data integration 
approach usually does not serve the purpose of high-resolution yield 
mapping. The computational cost of per-pixel crop simulation is high, 
but such barriers are being lifted by the recent development of 
cloud-computing platforms such as Google Earth Engine (Gorelick et al., 
2017). 

The remote sensing-based empirical approach for crop yield map
ping employs regression or machine learning techniques to relate 
vegetation variables at key crop growth stages directly to yield. An early 
work by Tucker et al. (1980) showed that time-integrated NDVI had 
significant correlation with grain yield in a winter wheat field in Belts
ville, Maryland. Becker-Reshef et al. (2010) demonstrated that seasonal 
peak NDVI from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) strongly correlated with winter wheat yield in Kansas and 
Ukraine. Franch et al. (2015) extended the Becker-Reshef et al. (2010) 
approach by including Growing Degree Day (GDD) information, which 
enabled yield forecasting at about one month prior to peak NDVI. Funk 
and Budde (2009) found that time-integrated MODIS NDVI adjusted to 
the onset of the rainy season correlated well with maize production in 
Zimbabwe. Yield estimation may be improved by incorporating explicit 
phenology information using other vegetation indices beyond NDVI. 
Building on the work of Funk and Budde (2009), Bolton and Friedl 
(2013) suggested that MODIS-based two-band Enhanced Vegetation 
Index (EVI2) standardized by the greenup date correlated better than 
NDVI with county-level yield for maize, but indifferent for soybean, over 
central US. Similarly, Sakamoto et al. (2013) applied a phenology 
detection method to identify corn silking stage and demonstrated that 
MODIS-derived Wide Dynamic Range Vegetation Index (WDRVI) 
(Gitelson, 2004) at that stage had high correlations with yield over 
major corn producing states of the US. Johnson (2014) proved that 
daytime land surface temperature (LST) negatively correlated with 
maize and soybean yield in the US while MODIS peak NDVI positively 
correlated with yield. Recently, Skakun et al. (2021) investigated the 
utility of Landsat-8, Sentinel-2, WorldView-3 and Planet data for corn 
and soybean yield mapping over a number of sample sites in Iowa, and 
found that surface reflectance from red-edge bands performed better 
than vegetation indices to reveal field-level yield variability. Lobell 
et al. (2015) developed an approach that used simulations from a crop 
model to train a regression to predict yields from satellite observations, 
and the approach was tested in industrial as well as smallholder systems 
(Jin et al. 2019). 

While regression-based methods are straightforward to implement, 
more complex algorithms and data analytic techniques such as machine 
learning algorithms are being increasingly investigated. Using NDVI 
from the Advanced Very High Resolution Radiometer (AVHRR) and 
MODIS, Li et al. (2007) compared multivariate linear regression and 
artificial neural networks for modeling corn and soy yield over a number 
of sample counties in the US corn belt. Likewise, Johnson et al. (2016) 
compared the performance of multiple linear regression and nonlinear 

Bayesian neural networks and model-based recursive partitioning for 
forecasting barley, canola and spring wheat yields on the Canadian 
Prairies. Based on the finding that NDVI and LST highly correlated with 
crop yield, Johnson (2014) built a regression tree model using multiple 
years of county-level yield statistics as reference and applied the model 
to MODIS data to forecast corn and soybean yield at 250 m resolution in 
the US. Cai et al. (2019) tested the utility of the enhanced vegetation 
index (EVI) from MODIS and solar-induced chlorophyll fluorescence 
from GOME-2 and SCIAMACHY, and regression and machine learning 
algorithms for wheat yield prediction in Australia, and found that the 
combination of MODIS EVI, climate data and support vector machines 
(SVM) could achieve high performance in yield prediction. Mateo-San
chis et al. (2019) proposed a multi-sensor metric, namely the time lag 
between MODIS EVI and vegetation optical depth (VOD) from the Soil 
Moisture Active Passive (SMAP) satellite, as input to nonlinear kernel 
ridge regression for modeling county-scale crop yield in the US corn belt. 
Deep learning algorithms are also being explored in yield estimation. 
Schwalbert et al. (2020) developed a method for in-season soybean yield 
forecasting using the Long-Short Term Memory (LSTM) algorithm, 
MODIS-based NDVI, EVI and LST data, and precipitation data at the 
municipality scale in the Brazilian state of Rio Grande do Sul. Recent 
research has also started to combine machine learning and crop models 
by incorporating output variables from crop models as input features to 
machine learning algorithms for yield estimation (Paudel et al., 2021; 
Shahhosseini et al., 2021). 

These previous studies clearly show that crop yield estimation rep
resents a continually active line of research in remote sensing. The pri
mary goal is to improve the accuracy of yield estimation using new data 
and techniques, and/or to advance the date of in-season forecasting. 
However, most previous studies are demonstrative research with limited 
spatial extents and/or temporal span in their study areas. Studies 
exploring the long-term satellite data archives to evaluate the variability 
of crop yields also exist albeit over small study areas (e.g. Gao et al. 
2018, Liu et al. 2020). More importantly, common to most yield map
ping studies, crops in the temperate climate zone are often the target 
crops and target regions. Long-term, large-area crop yield mapping in 
the tropics does not exist. Unlike the temperate region where climate 
conditions are relatively homogenous and crop phenologies are largely 
synchronous, cropping systems in the tropics are more complex in the 
sense that planting and harvesting schedules could be substantially 
different for the same crop (e.g. soybean in Brazil) (Song et al., 2021a). 
Statistics-based phenological metrics derived from time-series of satel
lite data can capture the salient features of vegetation phenology while 
maintaining high spatial and temporal data consistency, and thus, pro
vide a unique advantage to large-area vegetation type mapping (DeFries 
et al., 1995; Hansen et al., 2013; Song et al., 2018). The main objective 
of this study is to explore the utility of statistical metrics derived from 
Landsat and MODIS data as well as machine learning algorithms for 
high-resolution, long-term crop yield mapping in the tropics. Producing 
long-term spatially explicit yield information is especially imperative in 
tropical countries, where agricultural production is growing rapidly, 
causing detrimental impacts to natural environment (Gibbs et al., 2010; 
Potapov et al., 2022; Song et al., 2018; Zalles et al., 2021). We focus on 
annual soybean yield in Brazil over 2001–2020 in this study. 

2. Data and methods 

2.1. Study area 

Our study area covers the southern hemisphere portion of Brazil. 
Brazil is the world’s leading producer and exporter of soybeans, ac
counting for more than 35% of global production and about half of the 
world’s total export (FAO, 2020). Based on statistics from the Food and 
Agriculture Organization of the United Nations (FAO), soybean pro
duction in Brazil has tripled from 37.9 million tons in 2001 to 114.3 
million tons in 2019 (FAO, 2020). Over the same time period, soybean 
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cultivation area in Brazil increased from 14.0 Mha to 35.9 Mha, and the 
national average yield increased from 2.71 to 3.18 tons/ha with the 
maximum yield of 3.39 tons/ha achieved in 2018 (FAO, 2020). The 
dramatic increase in soybean cultivation in Brazil (Fig. 1) has directly 
and indirectly caused widespread natural vegetation loss and cascading 
environmental impacts in the Amazon, Cerrado and other biomes (Song 
et al., 2021a; Zalles et al., 2019). 

2.2. Satellite data and products 

We used Landsat and MODIS as the main satellite data to derive 
vegetation characteristics of soybean plants, as they represent the most 
consistent satellite data records over the past two decades. According to 
the United States Department of Agriculture (USDA) crop calendars for 
Brazil, soybeans in Brazil are typically planted in October to December 
and harvested in March to May (https://ipad.fas.usda.gov/rssiws/al/cr 
op_calendar/br.aspx). In our study, all Landsat and MODIS observations 
acquired between November 1st and April 30th of the next year from 
2000 to 2019 were processed. The MODIS surface reflectance (SR) data 
in blue (469 nm), green (555 nm), red (645 nm), near-infrared (NIR, 858 
nm), shortwave infrared (SWIR, 1640 nm and 2130 nm) and thermal 
(11,030 nm) wavelengths were obtained as 16-day composites from the 
MOD44C product, same as the MOD09GA, MOD09GQ and MODTBGA 
v006 products (Vermote and Wolfe, 2015). Landsat images acquired by 
the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), 
and Operational Land Imager (OLI), with blue, green, red, NIR, and 
SWIR bands, were converted from top-of-atmosphere reflectance to 
normalized surface reflectance (NSR) through an automated data pro
cessing system (Potapov et al., 2020). Using MODIS SR as normalization 
target, the system corrected atmospheric and anisotropic effects of 
Landsat after at-sensor radiance calculation, cloud, shadow and haze 
masking. The Landsat NSR, from all sensors, was then processed to 
16-day composites consistent with the MODIS product. Both Landsat 
NSR and MODIS SR 16-day time-series were used to create seasonal 
phenological metrics, including NDVI, EVI, normalized difference water 
index (NDWI) and other band ratio indices (Table 1). A complete 
description of Landsat data processing and the freely available software 

tools to generate phenological metrics is provided in Potapov et al. 
(2020). 

We used a recently developed 30 m resolution (0.00025◦ ×

0.00025◦), annual, 2001-2019 soybean classification map product 
(Song et al., 2021a) as masks to constrain the yield modeling and 
mapping to identified soybean pixels (Fig. 1). For simplicity and 
consistent with the soybean classification map product, in this study we 
refer to a cropping year by the harvest year. For example, year 2001 
indicates the 2000/01 cropping year. The soybean classification product 
was developed using the above Landsat and MODIS data as input in 
addition to 30 m resolution topographic features from the Shuttle Radar 
Topography Mission (SRTM) data. Continentally distributed field ob
servations collected over three years (2017, 2018 and 2019) were used 
as training to calibrate a multi-year bagged decision tree model for 
soybean classification. The overall accuracy of the soybean classification 
maps for the years of 2017, 2018, and 2019, where we had probability 

Fig. 1. Soybean expansion in Brazil mapped using satellite data. (a) Soybean change during 2001–2010 and 2010–2019. For simplicity to visualize, the annual 
2001–2019 classification maps are used to create bi-temporal change layers. Landsat mosaic of South America is used as the backdrop in (a), and gray shaded area 
represents the study area of Brazil. Regional details over two soybean expansion frontiers are shown in (b) Mato Grosso and (c) MaToPiBa (Maranhao, Tocantins, 
Piaui and Bahia). Reduction in soybean cultivation was observed along the border between Sao Paulo and Minas Gerais, shown in (d). 

Table 1 
Input features for modeling and mapping soybean yield in Brazil. Please see 
Supplementary Information for the complete list of variables.  

Category Input Features N 

Landsat- 
based 

Seasonal vegetation phenological metrics derived from Blue, 
Green, Red, NIR, SWIR1, SWIR2 and thermal bands 

50 

MODIS- 
based 

Seasonal vegetation phenological metrics derived from Blue, 
Green, Red, NIR, SWIR1, SWIR2 and thermal bands 

24 

Topographic DEM and Slope 2 
Climate Long-term (1971-2000 average) climate data, monthly 

(October to May) TMP (mean 2 m temperature), DTR (diurnal 
2 m temperature range), PRE (precipitation rate), VAP (vapor 
pressure), WET (wet days), CLD (cloud cover), TMN 
(minimum 2 m temperature), TMX (maximum 2 m 
temperature) and PET (potential evapotranspiration) 

72 

Weather Annual (2000 through 2019) in-season weather data, 
monthly (October to May) TMP, DTR, PRE, VAP, WET, CLD, 
TMN, TMX and PET 

72 

Soil Water storage capacity, topsoil and subsoil bulk density, 
cation exchange capacity of the clay fraction in the topsoil 
and subsoil, topsoil and subsoil clay, sand and silt fractions, 
topsoil and subsoil pH, and area weighted topsoil and subsoil 
carbon content 

15  
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field sample for validation, was 96%, 94% and 96%, respectively, with 
high and balanced producer’s and user’s accuracies (Song et al., 2021a). 

2.3. Climate and weather data 

Monthly climate and weather covariates were obtained from the 
Climatic Research Unit gridded Time Series (CRU TS) version 4.04 
dataset (Harris et al., 2020). The variables included TMP (mean 2 m 
temperature), DTR (diurnal 2 m temperature range), PRE (precipitation 
rate), VAP (vapor pressure), WET (wet days), CLD (cloud cover), TMN 
(minimum 2 m temperature), TMX (maximum 2 m temperature) and 
PET (potential evapotranspiration) at a spatial resolution of 0.5◦ × 0.5◦. 
We calculated monthly average values from 1971 to 2000 for the 
months from October to May to represent long-term climatology. For 
each year between 2000 and 2019, we directly used the monthly values 
for the months from October to May to represent in-season weather 
(Table 1). 

2.4. Soil data 

The Regridded Harmonized World Soil Database v1.2 at 0.05◦ ×

0.05◦ spatial resolution (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012; Wieder 
et al., 2014) were obtained and processed similar to the climate and 
weather data. The soil variables included available water storage ca
pacity, topsoil (0-30 cm) and subsoil (30-100 cm) bulk density, cation 
exchange capacity of the clay fraction in the topsoil and subsoil, topsoil 
and subsoil clay, sand and silt fractions, topsoil and subsoil pH, and area 
weighted topsoil and subsoil carbon content (Table 1). 

2.5. Municipal yield statistics 

We obtained soybean yield statistics at the municipality scale for 
every year between 2001 and 2019 from the Brazilian Institute of Ge
ography and Statistics (IBGE) Municipal Agricultural Production data
base (https://sidra.ibge.gov.br/). The size of the municipalities where 
soybeans are cultivated varies widely from south (small) to north 
(large), with a median size of approximately 48 Kha, the first quantile of 
22 Kha and the third quantile of 135 Kha. These yield statistics were 
used as reference data for training and evaluation (Fig. 2). 

2.6. Modeling yield 

The overall workflow of modeling and mapping soybean yield is 
presented in Fig. 3. Major steps include spatial aggregation of remote 
sensing (RS)-based vegetation phenological metrics, topographic (topo) 
features, climate, weather, and soil variables to municipal scale, cate
gorical feature selection, random forests (RF) (Breiman, 2001) model 
training, RF prediction, bias correction, per-pixel RF model selection 
and composition, and map evaluation. Details of each step are described 
as follows. 

The 0.5◦ × 0.5◦ climate and weather data, and the 0.05◦ × 0.05◦ soil 
data were first resampled using nearest resampling to 0.00025◦ ×

0.00025◦ to match the spatial resolution of the soybean classification 
map, remote sensing data and topographic features. With the annual 
soybean classification map as a mask, we aggregated these input data
sets to municipal scale by taking the average value over soybean pixels 
in each municipality. The spatial aggregation step was conducted for 
every year independently between 2001 and 2019. To remove the non- 
soybean and low-soybean municipalities, we selected the municipalities 
with annual soybean pixels ≥ 50,000, resulting in a total of 15,784 
municipalities across the 19-year period. These municipalities contained 
95% of all mapped soybean pixels over the study period. 

To investigate the relative utilities of these multi-source, multi-res
olution input datasets for yield modeling, we conducted three progres
sive experiments using categorical feature selection. Specifically, we 
built three random forests models with (1) RS and topo features as input, 
(2) RS, topo, climate and weather features as input, and (3) RS, topo, 
climate, weather and soil features as input. Performance of model #1 
represents the utility of RS and topo features to model yield. Improved 
performance of model #2 over model #1 would represent the value of 
weather and climate data. Likewise, improved performance of model #3 
over model #2 would represent the value of the soil variables. 

Municipal yield statistics were used as reference for all three models. 
For each model, we randomly selected 80% municipalities as training (n 
= 12,649) and the remaining 20% was reserved for independent test (n 
= 3,135), with both training and test data covering all 19 years. We 
calculated root-mean-square-error (RMSE), mean bias error (MBE), 
mean absolute error (MAE), and r2 using both training and test data for 
all three models. To further enhance the robustness of the model 

Fig. 2. Municipality-level yield statistics from the Brazilian Institute of Geography and Statistics (IBGE) were used as reference for modeling and mapping soy
bean yield. 
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evaluation and to eliminate potential bias from a particular realization 
of sampling, we implemented a Monte Carlo method and repeated the 
random training/test split, model training and evaluation 100 times. 
The final model performance was represented using box plots of RMSE, 
MBE, MAE and r2 of the 100 runs. 

In addition to model evaluation with 20% withheld test data, we also 
conducted the leave-one-year-out model assessment. For every year 
between 2001 and 2019, we used 18-years of data to calibrate the 
random forests models and used the model to predict over the left-out 
year. For the left-out year, we compared the predicted yield with 
reference statistics and calculated error metrics. 

Our model assessment revealed that climate and weather variables 
significantly improved model performance, but soil variables did not 
further improve model performance (more details are provided in the 
Results and Discussion sections). Therefore, the model with RS, topo, 
climate and weather variables as input (i.e. model #2) was selected as 
the primary model for yield estimation. However, due to the coarse 
spatial resolution (0.5◦ × 0.5◦) of the climate and weather data, spatial 
grid patterns were noticed in some regions. To remove these artifacts, 
we implemented model #1 (RS and topo features as input) as a sec
ondary model, and results of the two models were combined (see more 
details below). 

To improve computational efficiency, we conducted individual 
feature selection for both models. For each RF model, we trained the 
model using all features as input, ranked each feature and selected the 
top features with a cumulative importance of greater than 95%. We also 
constructed a correlation matrix of the features and removed those less 
important features that had a correlation coefficient of greater than 0.95 
with the more important ones. Error metrics were calculated for all as 
well as selected features to demonstrate the comparable performance of 
trained models. We implemented the random forest classifier function in 
the sklearn package in python. The RF parameters fine-tuned included 
n_estimators (number of trees), max_features (number of features to 
consider at every split), max_depth (maximum number of levels in a 
tree), min_samples_split (minimum number of samples required to split a 

node), min_samples_leaf (minimum number of samples required at each 
leaf node). We applied a randomized search on hyper-parameters fol
lowed by a grid search to determine the exact values for these 
parameters. 

The immediate output of the two RF models include predicted soy
bean yield, represented as the mean value of all trees in the forest, and 
associated uncertainty, represented as the standard deviation of all trees 
in the forest. For continuous variables, random forests could generate 
underestimation at the high-end of the variable and overestimation at 
the low-end of the variable because of the effect of “regression to the 
mean” (Huang et al., 2016; Zhang and Lu, 2012). Such is the case for our 
yield modeling in this study. To correct these systematic biases, we 
followed Zhang and Lu (2012) and Huang et al. (2016), and applied 
linear regression using the municipal yield statistics as the dependent 
variable and the RF-predicted yield as the independent variable. The 
derived linear equation was subsequently applied to the adjust the 
RF-predicted yield and uncertainty. 

We implemented the two calibrated random forest models (models 
#1 and #2) and their associated linear regressions independently using 
the annual input datasets. The outputs were two sets of 30 m resolution 
soybean yield and uncertainty maps for every year between 2001 and 
2019. We created a final soybean yield and uncertainty map for every 
year through per-pixel composition, where, for every pixel, the soybean 
yield and associated uncertainty were selected from the model with a 
smaller uncertainty. 

2.7. Yield map evaluation 

We evaluated the quality of the annual, 30 m resolution soybean 
yield maps at the municipal scale. Average yield was derived from the 
maps, and compared to municipal yield statistics as reference. We 
computed the difference of the two datasets and constructed a histo
gram. We calculated RMSE, MAE, MBE, and r2, and created scatter plots 
using the 19 years of data. We also calculated these error metrics for 
every year to evaluate the temporal consistency of the yield map time 

Fig. 3. Overall workflow of mapping annual soybean yield 2001–2019 using satellite data, climate, weather, soil and topography data, municipality statistics, 
random forests and linear regression models. Two random forests models were trained and implemented with more details reported in the text. 
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series. 

3. Results 

3.1. Model selection and performance 

Using remote sensing-based vegetation phenological metrics and 
topographic features as input to random forests (model #1) produced an 
r2 of 0.74, an RMSE of 323 kg/ha, an MBE of 0 kg/ha and a MAE of 240 
kg/ha for training data. Compared to the 2001–2019 national average 
yield of 2869 kg/ha, this RMSE represents 11% error. Adding climate 
and weather variables to input (model #2) significantly improved model 
performance, as represented by the increase in r2 and reduction in RMSE 
and MAE, for both training and test data. The improved model had an r2 

of 0.79, an RMSE of 294 kg/ha, an MBE of 0 kg/ha and a MAE of 218 kg/ 
ha for training data, and an r2 of 0.69, an RMSE of 356 kg/ha, an MBE of 
15 kg/ha and a MAE of 264 kg/ha for test data. Adding soil variables to 
input (model #3) showed little to no value in further improving model 
performance. Therefore, we discarded model #3 and implemented 
model #1 and #2 in this study. Both model #1 and #2 were chosen 
because although climate and weather data demonstrated considerable 
utility in modeling soybean yield, their coarse spatial resolution (0.5◦ ×

0.5◦) caused apparent grid patterns when the model was applied to 30 m 
spatial resolution, whereas model #1 generated spatially coherent re
sults. Moreover, individual feature selection not only improved 
computational efficiency but also improved model accuracy. Consistent 
for all model categories, there remained some differences between 
training and test, indicating potential overfitting of the models. This was 
likely due to the lack of high-quality soil data and other important 
agricultural management variables (e.g. fertilizer use) in the model 
(please see more details in the Discussion section). 

Predicted yield from random forests models were highly consistent 
with reference yield from municipal statistics (Fig. 4). However, the 
direct outputs of the random forests models under-estimated yield at the 

high end and over-estimated yield at the low end (Figs. 4a and 4c). 
Applying a linear regression successfully corrected these systematic 
biases for both models (Figs. 4b and 4d). Moreover, the overall model 
performance was also slightly improved, as demonstrated by the 
reduction in RMSE and MAE for both training and test results. For 
instance, the training accuracy in terms of RMSE was reduced from 294 
to 278 kg/ha and the test accuracy was improved from 356 to 344 kg/ha 
for model #2 after bias adjustment (Figs. 4a vs 4b). 

Although the model was trained using all 19-years of data as input, 
evaluation of model performance at the annual time scale revealed 
consistent model performance across all 19 years (Fig. 5). Based on the 
withheld test data, the 19-year overall RMSE was 344 kg/ha and the r2 

was 0.69. The RMSE represents 12% error relative to long-term yield 
mean. The annual RMSE values ranged from 214 kg/ha in 2010 to 456 
kg/ha in 2005, and the annual r2 values ranged from 0.39 in 2003 to 
0.76 in 2004. No significant systematic bias was observed for any of the 
years (Fig. 5). 

The leave-one-year-out model assessment revealed that the yield 
models performed well for most of the 19 years, but performed relatively 
poorly for 2005 and 2015 with notably higher RMSE and lower r2, 
respectively (Fig. 6). The RMSE of the leave-one-year-out assessment 
ranged from 259 kg/ha to 816 kg/ha. These results are in general 
comparable to regional studies of satellite-based soybean yield mapping 
in the Midwest of the United States (Lobell et al., 2015) and Southern 
Brazil (Schwalbert et al., 2020). Both 2005 and 2015 did not show 
notable performance deficiency when data of the two years were 
included in training (Fig. 5). Comparison between annual accuracies of 
the two model assessments (Figs. 5 and 6) suggests that model trained 
with long time series of data generally perform well for unseen years. 
The comparison also highlights the significance of including both good 
and poor harvesting years in training for enhancing the temporal 
generalization and predictive capability of trained models. 

Fig. 4. Performance of yield models before and after systematic bias adjustment using linear regression. (a) Random forests (RF)-predicted soybean yield against 
reference yield from municipal statistics. Input data for RF include remote sensing, topographic features, climate and weather variables. The left panel is density 
scatter plots using training data and the right panel is density scatter plots of independent test data. The red lines on both panels represent the linear regression line. 
(b) Same as (a), but a linear regression was applied to adjust bias in RF outputs. (c) RF-predicted soybean yield against reference yield. Input data for RF only include 
remote sensing and topographic features. (d) Same as (c), but after linear bias adjustment. 
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Fig. 5. Performance of yield model at an annual time scale. X-axis represents model-predicted yield, and y-axis represents reference yield from municipal statistics. 
The top-left scatter plot is a combination of the two scatter plots in Fig. 4d. Scatter plots are made using training data and withheld test data. Input data for model 
include remote sensing, topographic features, climate and weather variables. 
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3.2. Annual soybean yield and uncertainty maps 

Implementing the calibrated random forests and linear regression 
models at 30 m spatial resolution generated spatially and temporally 

coherent soybean yield distributions across Brazil from 2001 to 2019 
(Fig. 7a). Considerable spatial heterogeneity in soybean yields was 
observed across the country. In 2001, the highest soybean yield regions 
included central Mato Grosso and western Parana (also see Fig. 2a), and 

Fig. 6. Leave-one-year-out model assessment. For each year between 2001 and 2019, 18-years of data were used to train the model (blue dots and text), which was 
used to predict over the left-out year. Municipal statistics of the left-out year were used as reference to evaluate the model performance (red dots and text). 
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the lowest yield regions included Rio Grande do Sul, eastern Goias, 
western Minas Gerais, and western Bahia. Increase in soybean yield was 
found in many regions, most notably in northern Rio Grande do Sul and 
western Bahia (also see Fig. 2b). Soybeans in Mato Grosso experienced 
not only a substantial area expansion but also considerable yield growth. 
Per-pixel uncertainty of soybean yields (Fig. 7b) showed that the un
certainty estimates were mostly between 300 kg/ha and 500 kg/ha. 
Moreover, the uncertainty distribution varied both spatially and 
temporally, with the south region (e.g. Rio Grande do Sul) appeared to 
have slightly higher uncertainties than center west (e.g. Mato Grosso). 

The annual, 30 m resolution maps revealed field-level heterogeneity 
in soybean yields (Fig. 8). Large contiguous soybean fields in central 
Mato Grosso have moderate-to-high yield and small variations between 
fields (Fig. 8a), whereas smaller fragmented fields in Rio Grande do Sul 
show much larger variations (Fig. 8b). Over the past 19 years, soybean 
yields in central Mato Grosso experienced an overall increase in most 
fields, whereas in Rio Grande do Sul, larger fields appeared to have 
relatively greater yield growth than smaller fields (Fig. 8b). 

3.3. Map evaluation 

The annual 30 m soybean yield maps were aggregated to municipal 
scale for a quantitative quality assessment. Compared to the reference 
data from official statistics, the yield map product had an overall RMSE 
of 418 kg/ha, a MAE of 311 kg/ha, an MBE of 92 kg/ha, and an r2 of 
0.60. Compared to the 2001–2019 national average yield of 2,869 kg/ 
ha, the RMSE represents 15% error. These error metrics were all slightly 
worse than the model performance, with the RMSE about 20% higher 
(compared to 344 kg/ha; see detailed numbers of other error metrics in 
Fig. 4). An overall slight positive bias was noted (mean bias of 92 kg/ha 
or 3% error compared to long-term average yield, Fig. 9). Moreover, 
systematic underestimation was still noticed at the high end of yield and 
overestimation at the low end of yield (Fig. 10), although a linear 
regression successfully corrected model bias at the training stage at the 
municipal level (Fig. 4). At the annual time scale, the map accuracy was 
comparable to model performance for the majority of the 19 years 
(Fig. 10). The comparison between model performance and map quality 
assessment suggested that uncertainties at the 30 m pixel scale were 
larger than those at the aggregated municipal scale, highlighting a 
general multi-scale issue in the applications of regression-based machine 

Fig. 7. Annual soybean yield and uncertainty maps for selected years over Brazil. Yield and uncertainty maps were produced at 30 m spatial resolution and averaged 
to 1 km for the purpose of display. Regional details at 30 m resolution are shown in Fig. 8. 
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learning algorithms in remote sensing. 

4. Discussion 

4.1. Uncertainty sources for yield modeling 

Model performance and the quality of the annual yield maps are 
influced by a number of factors, including the temporal density of sat
ellite observations, the coarse spatial resolution and uncertainties of 
climate and weather variables, lack of up-to-date soil measurements, 
unknown uncertainties in the official statsitics, lack of field-level refer
ence data, missclassifications in the annual soybean masks, and the 
muti-scale modeling and prediction procedure. The impacts of these 
factors are discussed in detail as follows. 

Depending on the type of cultivar, environmental conditions and 
agricultural management practices, soybean plants take 90 to 150 days 
from planting to maturity. During this short growing window, vegeta
tion cover in the field experiences rapid transitions from bare ground to 
nearly closed canopy and to bare ground again. Such phenological dy
namics require dense time-series data to capture the key growth stages 
that are critical to crop biomass accumulation and yield formation. 
Studies have demonstrated that the peak growing period in vegetation 
index is most important for modeling yield for wheat, corn and soybeans 

(Becker-Reshef et al., 2010; Johnson, 2014). In addition, natural di
sasters during or after the seed-filling stage can cause severe yield 
reduction (Hosseini et al., 2020). In this study, we used MODIS and 
Landsat as the main remote sensing data source. Due to the sparse 
temporal interval of Landsat, cloud-free Landsat observations vary 
considerably in space and time (Fig. 11). 

On the other hand, daily MODIS acquisitions are more robust to 
cloud contamination. Indeed, the important features identified by 
random forests include many MODIS-based spectral features. The most 
important feature of the random forests model (model #1) was 
“M_NDVI_av90max”, which represented the average value of the 90th 

percentile and maximum NDVI (i.e. peak NDVI) derived from MODIS 
(Fig. 12). The second and third most important features were MODIS- 
based peak-season NIR reflectance and middle-season NDVI, respec
tively. These top three features accounted for >40% of cumulative 
feature importance (Fig. 12). Another inherent factor that enabled 
MODIS to be an efficient sensor for modeling soybean yield is the large 
field size in Brazil (Fritz et al., 2015). The feature ranking analysis 
suggested that improving the temporal density of high spatial resolution 
satellite data, such as the Harmonized Landsat and Sentinel-2 product 
(Claverie et al., 2018), may improve yield mapping at the field scale. 
Further research is also needed to investigate the utility of other freely 
available satellite data, particularly radar data (e.g. Sentinel 1) for yield 

Fig. 8. Spatial and temporal details of soybean yield at 30 m resolution in two selected regions: (a) central Mato Grosso and (b) northern Rio Grande do Sul. Field- 
level yield heterogeneity is revealed by the time series of high-resolution maps. 
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estimation, as radar data can provide complementary infromation to 
optical data for crop monitoring (Song et al., 2021b; Veloso et al., 2017) 
in addition to their all-weather data acquisition. 

Our study explicitly demonstrated the value of climate and weather 
data for modeling crop yield. For the trained random forests model with 
all the features as input, climate and weather variables accounted for 
36% of the total feature importance (Table 2). Compared to the models 
with only remote sensing data as input, adding climate and weather 
variables reduced RMSE by about 7 to 9%, and the improvement was 
statistically significant. However, adding coarse-resolution climate and 
weather variables could also introduce undesirable artifacts. By con
structing two models and through per-pixel composition of model out
puts, our strategy effectively combined the advantages of the two 
respective models. For any given year, the primary model (i.e. the one 
with climate and weather variables as input) was chosen for the majority 
of soybean growing regions of the country, while the secondary model (i. 
e. the one without climate and weather variables) was selected only for 
some clustered regions (Fig. 13). This data-driven approach relied on the 
explicit uncertainty outputs associated with predictions of random for
ests, and the composited map had minimum uncertainties from the 
multi-model ensemble. Future research will evaluate the uncertainty of 
climate and weather variables to yield estimation, and incorporate 
higher-resolution weather dataset for improved yield estimation, e.g. 
the Climate Hazards Group Infrared Precipitation with Stations 
(CHIRPS) precipitation data (Funk et al., 2015). 

The lack of contribution by soil variables to soybean yield modeling 
was likely because the soil data were outdated. Soil characteristics and 
topography are strong determinant of cropland suitability (Ishikawa and 
Yamazaki, 2021). We used the Harmonized World Soil Database 
(HWSD) in this study, which was complied from multiple data sources 
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). The data source for Brazil was 
the Soil and Terrain database for Latin America and the Caribbean, at 
the scale of 1:5 million and released in 1998. Therefore, HWSD repre
sents the soil conditions in Brazil before 1998. From 2000 to 2019, 
soybean cultivation area in Brazil nearly tripled, and new soybean fields 
were mostly converted from pasture and forests (Song et al., 2021a). The 
conversion process involves removal of surface vegetation and 

extraction of the root systems. Subsequently, soil prerparation is critical 
for cultivating soybeans on the newly converted land. In the Cerrado, the 
largest soybean growing biome in Brazil, the native soil condition is poor 
for crop production. Most of the soils in the Cerrado are highly weath
ered Oxisols and Ultisols, with high acidity and serious definicieny in 
nutrients (Lopes, 1996). Improved management practicies such as lim
ing and fertilizerization have greatly increased soil fertility for growing 
soybeans (Lopes, 1996). These important changes in soil property are 
not reflected by the HWSD soil database, which islikely the principal 
reason why the soil data did not contribute to soybean yield modelilng. 
Crop modeling studies suggest that soil-related yield variability out
weighs the simulated year-to-year variations in yield due to weather 
when no fertilizer is applied (Folberth et al., 2016). Up-to-date high-
quality soil data may improve modeling yiled for soybean and other 
crops in the tropics where agriculture is expanding (Eigenbrod et al., 
2020). Future studies will investigate the utility of higher resolution soil 
dataset for yield mapping (Hengl et al., 2017). Generating other 
spatially explicit data on agricultural management that are important 
for crop production such as seed variety and fertilizer use, is another 
potential way of improving yield mapping. 

Lastly, a common practice in crop yield mapping is to construct a 
machine learning model at an aggregated spatial scale where public 
yield statsitics are available, and apply the model to a finer scale at 
which remote sensing data are acquired (e.g. Johnson 2014). The 
upscaling process (e.g. spatial aggregation from pixel to municipal) can 
reduce uncertainties in the original data, as pixel-level errors may be 
averaged out. Our yield models were calibrated at the municipal scale. 
More problematic is the downscaling process (i.e. applying the trained 
model to pixels), as pixel-level errors often exist from e.g. atmospheric 
correction or misclassification. The discrepency between model perfor
mance (Fig. 5, overall RMSE 344 kg/ha) and yield map assessment at the 
same municipality scale (Fig. 10, overall RMSE 418 kg/ha) revealed a 
positive bias in the predicted yield (Fig. 9), although the models were 
unbiased after linear adjustment (Fig. 4). This bias was primarily 
stemmed from the downscaling process, where pixel-level errors couls 
corrupt the results. Such bias may be removed using field-based yield 
measurements. However, such datasets are traditionally held by private 
industry without public access especially over large areas such as the 
national scale (see Deines et al. 2021 for the case of the United States). 
Open access to field observations is rare in most parts of the world 
(Coutu et al., 2020). Increasing the access to historical field observations 
is a potentially effective way of advancing crop yield research. 

4.2. Towards operational yield mapping 

Achieving operational yield prediction using satellite data alone is a 
cost-effective approach of generating timely information on crop pro
duction. To demonstrate the predictive capability of our yield models, 
we applied the models, trained on 2001-2019 data, to 2020 data and 
produced a 30 m resolution soybean yield map for 2020 (Fig. 14). We 
also collected municipal yield statistics for 2020 and compared with our 
2020 yield map. Our random forests models, trained on 2001-2019 data, 
were able to predict 2020 yield with comparable accuracy as the with
held 2001-2019 test data. The RMSE, MBE and r2 of the direct output of 
random forests predictions for 2020 was 555 kg/ha, -145 kg/ha and 
0.66, respectively. Consistent with the model performance on 2001- 
2019 test data, an overall bias was noted. To eliminate this bias, we 
applied the linear regression approach as reported above. We randomly 
selected 3% of municipalities (n=34) from the 1,136 municipalities, and 
constructed a linear regression model using the random forests- 
predicted yield as the independent variable and the 2020 municipal 
yield statistics as the dependent variable. After bias correction, the MBE 
was reduced to -37 kg/ha, and RMSE was reduced to 462 kg/ha 
(Fig. 14b). The RMSE represents 13% error relative to the national 
average of 3480 kg/ha in 2020. This result suggests that our pre-trained 
models can be used to generate high-resolution soybean yield maps for 

Fig. 9. Histogram of the difference between predicted yield and reference yield 
at the municipal level between 2001 and 2019 (n=15,784) indicating a slight 
positive bias in the predicted yield. 
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future years with the caveat that a small amount of reference data are 
still needed for the final bias correction. Given the continued operational 
satellite data acquisitions, including Landsat 8, Landsat 9, MODIS and 
Visible Infrared Imaging Radiometer Suite (VIIRS), the demonstrated 
predictive capability of our pre-trained yield models may be used for 

future yield mapping in a semi-operational mode. 
The rapidly developing technology of satellite remote sensing is 

transforming global agriculture. Earth observation data are increasingly 
used in research and operational settings for mapping crop types, 
monitoring crop growth, improving agricultural management and 

Fig. 10. Quality assessment of 30 m soybean yield maps for every year between 2001 and 2019. The annual maps were averaged to the municipal scale to derive 
predicted yields (x-axis). Reference yields (y-axis) are official statistics. 

X.-P. Song et al.                                                                                                                                                                                                                                 



Agricultural and Forest Meteorology 326 (2022) 109186

13

forecasting food production. Increasing the comprehensiveness within a 
single data product, including area, yield, cropping intensity and cal
endar, at high spatial and temporal resolution has been identified as one 
of the future research areas in developing global gridded cropping sys
tem data product (Kim et al., 2021). We showed in a previous study that 
satellite data could be used retrospectively mapping soybean over South 
America since 2001 (Song et al., 2021a). Our 30 m South America 
soybean map product is being updated at an annual frequency in an 
operatioanl mode as new satellite data are acquired. This study extends 
our research from crop type mapping to yield mapping, and we 
demonstrated that pre-trained machine learning models could be 
applied for yield mapping in future years. Our current approach for yield 
mapping and updating uses satellite data of the entire growing season as 
input. This post-season mapping can generate highly relabile data 
products, but lacks sufficient timeliness to capture production shocks 
resulted from e.g. extreme weather events within the growing season. 
Recent research has demonstrated that early- and in-season crop type 
mapping and crop yield forecasting could be achieved using advanced 
machine learning algorithms (e.g. Lin et al. 2022), seasonal climate 
forecast (Iizumi et al., 2021), and in-season weather observations 
(Schauberger et al., 2017). Implementing robust in-season forecasting 
methods in monitoring systems is needed to mitigate the adverse im
pacts of climate change (Fritz et al., 2019; Kim et al., 2021; Li et al., 
2019; Lobell and Burke, 2010; Nakalembe et al., 2021). 

5. Conclusions 

We developed a machine learning-based approach to map annual 
soybean yield in Brazil over the past two decades. Consistent satellite 
observations from the open Landsat and MODIS data archives were used 
to calibrate unbiased yield models using random forests followed by 
linear regression. Soybean yield maps were generated at 30 m spatial 
resolution for every year from 2001 to 2020. NDVI at the peak of the 

Fig. 11. Cloud-free Landsat observations between November 1st and April 30th in selected years over Brazil.  

Fig. 12. Cumulative feature importance for the random forests-based soybean 
yield modeling using MODIS and Landsat phenological metrics as input. Fea
tures with a prefix of “M*” represents MODIS-based metrics, features with a 
prefix of “L*” represents Landsat-based metrics, and features with a prefix of 
“T*” represents topographic variables. “av” stands for “average”. The metrics 
are sorted from high to low along the vertical axis from bottom to top. Please 
see Supplementary Table S1 for more explanation of metric names. 

Table 2 
Importance of the five categories of input variables in random forests model for 
soybean yield prediction. Details of the variables are listed in Table 1. The total 
importance of all variables within each category was calculated and reported.  

Category of variables Importance in random forests model 

Landsat-based 0.1883 
MODIS-based 0.4371 
Climate 0.1037 
Weather 0.2539 
Topographic 0.0041 
Soil 0.0128  
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growing season was found to be the most important variable for 
modeling soybean yield. Our study explicitly demonstrated the utility of 
climate and weather variables for crop yield estimation. Our multi-scale 
approach was effective in integrating official yield statistics at political 
unit level with remote sensing data. Our study demonstrated that models 
trained on long-term historical data could be employed to predict yield 
for future years. Our research also highlights that improving the tem
poral density of high-resolution satellite observations, and enhancing 
the accessibility to field-level yield measurements are viable ways to 

improve crop yield mapping over large areas. 
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Fig. 13. Maps of random forests models chosen for predicting annual soybean yield. The model with climate and weather varaibles as input was more accurate and 
was used in the majority of the soybean growing regions every year. 

Fig. 14. Soybean yield in year 2020 predicted using models trained on 2001-2019 data. (a) 30-m map of soybean yield 2020. (b) Density distribution of the soybean 
yield map. The colors match those shown on the map, and each color corresponds to approximately 1/6 of the total soy pixels. (c) Comparison between predicted 
yield and reference yield from municipal statistics. 
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